[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Overview

Unlearnable Examples

Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, Yisen Wang.

Quick Start

Use the QuickStart.ipynb notebook for a quick start.

In the notebook, you can find the minimal implementation for generating sample-wise unlearnable examples on CIFAR-10. Please remove mlconfig from models/__init__.py if you are only using the notebook and copy-paste the model to the notebook.

Experiments in the paper.

Check scripts folder for *.sh for each corresponding experiments.

Sample-wise noise for unlearnable example on CIFAR-10

Generate noise for unlearnable examples
python3 perturbation.py --config_path             configs/cifar10                \
                        --exp_name                path/to/your/experiment/folder \
                        --version                 resnet18                       \
                        --train_data_type         CIFAR-10                       \
                        --noise_shape             50000 3 32 32                  \
                        --epsilon                 8                              \
                        --num_steps               20                             \
                        --step_size               0.8                            \
                        --attack_type             min-min                        \
                        --perturb_type            samplewise                      \
                        --universal_stop_error    0.01
Train on unlearnable examples and eval on clean test
python3 -u main.py    --version                 resnet18                       \
                      --exp_name                path/to/your/experiment/folder \
                      --config_path             configs/cifar10                \
                      --train_data_type         PoisonCIFAR10                  \
                      --poison_rate             1.0                            \
                      --perturb_type            samplewise                      \
                      --perturb_tensor_filepath path/to/your/experiment/folder/perturbation.pt \
                      --train

Class-wise noise for unlearnable example on CIFAR-10

Generate noise for unlearnable examples
python3 perturbation.py --config_path             configs/cifar10                \
                        --exp_name                path/to/your/experiment/folder \
                        --version                 resnet18                       \
                        --train_data_type         CIFAR-10                       \
                        --noise_shape             10 3 32 32                     \
                        --epsilon                 8                              \
                        --num_steps               1                              \
                        --step_size               0.8                            \
                        --attack_type             min-min                        \
                        --perturb_type            classwise                      \
                        --universal_train_target  'train_subset'                 \
                        --universal_stop_error    0.1                            \
                        --use_subset
Train on unlearnable examples and eval on clean test
python3 -u main.py    --version                 resnet18                       \
                      --exp_name                path/to/your/experiment/folder \
                      --config_path             configs/cifar10                \
                      --train_data_type         PoisonCIFAR10                  \
                      --poison_rate             1.0                            \
                      --perturb_type            classwise                      \
                      --perturb_tensor_filepath path/to/your/experiment/folder/perturbation.pt \
                      --train

Cite Our Work

@inproceedings{huang2021unlearnable,
    title={Unlearnable Examples: Making Personal Data Unexploitable},
    author={Hanxun Huang and Xingjun Ma and Sarah Monazam Erfani and James Bailey and Yisen Wang},
    booktitle={ICLR},
    year={2021}
}
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022