End-To-End Optimization of LiDAR Beam Configuration

Overview

End-To-End Optimization of LiDAR Beam Configuration

arXiv | IEEE Xplore

This repository is the official implementation of the paper:

End-To-End Optimization of LiDAR Beam Configuration for 3D Object Detection and Localization

Niclas Vรถdisch, Ozan Unal, Ke Li, Luc Van Gool, and Dengxin Dai.

To appear in RA-L.

Overview of 3D object detection

If you find our work useful, please consider citing our paper:

to be added after publication

๐Ÿ“” Abstract

Pre-determined beam configurations of low-resolution LiDARs are task-agnostic, hence simply using can result in non-optimal performance. In this work, we propose to optimize the beam distribution for a given target task via a reinforcement learning-based learning-to-optimize (RL-L2O) framework. We design our method in an end-to-end fashion leveraging the final performance of the task to guide the search process. Due to the simplicity of our approach, our work can be integrated with any LiDAR-based application as a simple drop-in module. In this repository, we provide the code for the exemplary task of 3D object detection.

๐Ÿ—๏ธ ๏ธ Setup

To clone this repository and all submodules run:

git clone --recurse-submodules -j8 [email protected]:vniclas/lidar_beam_selection.git

โš™๏ธ Installation

To install this code, please follow the steps below:

  1. Create a conda environment: conda create -n beam_selection python=3.8
  2. Activate the environment: conda activate beam_selection
  3. Install dependencies: pip install -r requirements.txt
  4. Install cudatoolkit (change to the used CUDA version):
    conda install cudnn cudatoolkit=10.2
  5. Install spconv (change to the used CUDA version):
    pip install spconv-cu102
  6. Install OpenPCDet (linked as submodule):
    cd third_party/OpenPCDet && python setup.py develop && cd ../..
  7. Install Pseudo-LiDAR++ (linked as submodule):
    pip install -r third_party/Pseudo_Lidar_V2/requirements.txt
    pip install pillow==8.3.2 (avoid runtime warnings)

๐Ÿ’พ Data Preparation

  1. Download KITTI 3D Object Detection dataset and extract the files:
    1. Left color images image_2
    2. Right color images image_3
    3. Velodyne point clouds velodyne
    4. Camera calibration matrices calib
    5. Training labels label_2
  2. Predict the depth maps:
    1. Download pretrained model (training+validation)
    2. Generate the data:
    cd third_party/Pseudo_Lidar_V2  
    python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume PATH_TO_CHECKPOINTS/sdn_kitti_object_trainval.pth --datapath PATH_TO_KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval \
    --save_path PATH_TO_DATA/sdn_kitti_train_set
    Note: Please adjust the paths PATH_TO_CHECKPOINTS, PATH_TO_KITTI, and PATH_TO_DATA to match your setup.
  3. Rename training/velodyne to training/velodyne_original
  4. Symlink the KITTI folders to PCDet:
    • ln -s PATH_TO_KITTI/training third_party/OpenPCDet/data/kitti/training
    • ln -s PATH_TO_KITTI/testing third_party/OpenPCDet/data/kitti/testing

๐Ÿƒ Running 3D Object Detection

  1. Adjust paths in main.py. Further available parameters are listed in rl_l2o/eps_greedy_search.py and can be added in main.py.
  2. Adjust the number of epochs of the 3D object detector in (we used 40 epochs):
  3. Adjust the training scripts of the utilized detector to match your setup, e.g., object_detection/scripts/train_pointpillar.sh.
  4. Initiate the search: python main.py
    Note: Since we keep intermediate results to easily re-use them in later iterations, running the script will create a lot of data in the output_dir specified in main.py. You might want to manually delete some folders from time to time.

๐Ÿ”ง Adding more Tasks

Due to the design of the RL-L2O framework, it can be used as a simple drop-in module for many LiDAR applications. To apply the search algorithm to another task, just implement a custom RewardComputer, e.g., see object_detection/compute_reward.py. Additionally, you will have to prepare a set of features for each LiDAR beam. For the KITTI 3D Object Detection dataset, we provide the features as presented in the paper in object_detection/data/features_pcl.pkl.

๐Ÿ‘ฉโ€โš–๏ธ License

Creative Commons License
This software is made available for non-commercial use under a Creative Commons Attribution-NonCommercial 4.0 International License. A summary of the license can be found on the Creative Commons website.

Owner
Niclas
PhD student
Niclas
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Python Algorithm Interview Book Review

ํŒŒ์ด์ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ธํ„ฐ๋ทฐ ์ฑ… ๋ฆฌ๋ทฐ ๋ฆฌ๋ทฐ IT ๋Œ€๊ธฐ์—…์— ๋“ค์–ด๊ฐ€๊ณ  ์‹ถ์€ ๋ชฉํ‘œ๊ฐ€ ์žˆ๋‹ค. ๋‚ด๊ฐ€ ๊ฟˆ๊ฟ”์˜จ ํšŒ์‚ฌ์—์„œ ์ผํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์˜ ๋ชจ์Šต์„ ๋ณด๋ฉด ๋ฉ‹์žˆ๋‹ค๊ณ  ์ƒ๊ฐ์ด ๋“ค๊ณ  ๋‚˜์˜ ๋ชฉํ‘œ์— ๋Œ€ํ•œ ์—ด๋ง์ด ๊ฐ•ํ•ด์ง€๋Š” ๊ฒƒ ๊ฐ™๋‹ค. ๋ฏธ๋ž˜์˜ ํ•ต์‹ฌ ์‚ฌ์—… ์ค‘ ํ•˜๋‚˜์ธ SW ๋ถ€๋ถ„์„ ์ด๋Œ๊ณ  ๋ฐœ์ „์‹œํ‚ค๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ์˜ I

SharkBSJ 1 Dec 14, 2021
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Pose estimation for iOS and android using TensorFlow 2.0

๐Ÿ’ƒ Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022