An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

Overview

An Ensemble of CNN

Machine Learning project 2017

Read me

NOTE: All commands should be run inside the tensorflow environment

Dependencies

Python 3.5.1 Tensorflow 1.3 numpy 1.13

Although the model might work with previous version of above libraries, these version are what were used in development. Link to dataset: https://www.kaggle.com/xainano/handwrittenmathsymbols

Preparation

Do the following steps only if the folders MathExprJpeg/train_data and MathExprJpeg/train_data and files x_data.npy, y_data.npy and labels.npy are none existent, otherwise go directly to Running Main section.

In order to run the model the training and testing folders must be created. If test_data folder and train_data folder does not exist in the MathExprJpeg folder, these must be created. Create them by running the script create_train_test_data.py like this:

python create_train_test_data.py

Then the datafiles for the training data must be created in order to speed up training. Called x_data.npy, y_data.npy and labels.npy. If non existent create by running the script create_datafiles.py like this:

python create_datafiles.py
Running main

After the preparation steps are done, set the preferred modes in cnn_math_main.py file. This is done by changing the parameters at the top of the file:

# set if data shold be read in advance
fileread = True
ensemble_mode = False 

fileread = True means that the data will be read from the previously created x_data.npy and y_data.npy files. Setting this to True is highly recommended. The ensemble_mode = False means that the model will not be run in ensemble mode. This is recommended as the ensemble mode is performance heavy and can not be guaranteed to work in the latest releases.

It is recommended to change the name of the logging file for each run:

writer = tf.summary.FileWriter('./logs/cnn_math_logs_true_2ep_r1')
writer.add_graph(sess.graph)

Also set the preferred value to the epoch and batch_size:

training_epochs = 40
batch_size = 20

When all of the above has been done, the model can be run with the command:

python cnn_math_main.py

The model has been known to sometimes get errors while reading files. The source of which is unknown. If such an error is to occur, run the following commands:

rm -r MatchExprJpeg/train_data
rm -r MatchExprJpeg/test_data
rm x_data.npy
rm y_data.npy
rm labels.npy

python create_train_test_data.py
python create_datafiles.py

And then try to run the cnn_math_main.py again. start tensorboard with:

tensorboard --logdir=./logs

to see the graphs for the scalars, the image being processed etc.

The model is implemented in the cnn_model.py class. If this file is tempered with it is possible that the model breaks.

Happy predicting

MachineLearningProjectCNN

The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022