Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Related tags

Deep Learningmxnet
Overview

Apache MXNet (incubating) for Deep Learning

Master Docs License
Build Status Documentation Status GitHub license

banner

Apache MXNet (incubating) is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines.

MXNet is also more than a deep learning project. It is also a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers.

Installation Guide

Install Dependencies to build mxnet for HIP/ROCm

ROCm Installation

Install Dependencies to build mxnet for HIP/CUDA

  • Install CUDA following the NVIDIA’s installation guide to setup MXNet with GPU support

  • Make sure to add CUDA install path to LD_LIBRARY_PATH

  • Example - export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:$LD_LIBRARY_PATH

  • Install the dependencies hipblas, rocrand from source.

Build the MXNet library

  • Step 1: Install build tools.

    sudo apt-get update
    sudo apt-get install -y build-essential
    
  • Step 2: Install OpenBLAS. MXNet uses BLAS and LAPACK libraries for accelerated numerical computations on CPU machine. There are several flavors of BLAS/LAPACK libraries - OpenBLAS, ATLAS and MKL. In this step we install OpenBLAS. You can choose to install ATLAS or MKL.

      sudo apt-get install -y libopenblas-dev liblapack-dev libomp-dev libatlas-dev libatlas-base-dev
  • Step 3: Install OpenCV. Install OpenCV here. MXNet uses OpenCV for efficient image loading and augmentation operations.
      sudo apt-get install -y libopencv-dev
  • Step 4: Download MXNet sources and build MXNet core shared library.
      git clone --recursive https://github.com/ROCmSoftwarePlatform/mxnet.git
      cd mxnet
      export PATH=/opt/rocm/bin:$PATH
  • Step 5: To compile on HCC PLATFORM(HIP/ROCm):
      export HIP_PLATFORM=hcc

To compile on NVCC PLATFORM(HIP/CUDA):

      export HIP_PLATFORM=nvcc
  • Step 6: To enable MIOpen for higher acceleration :

    USE_CUDNN=1
    
  • Step 7:

    If building on CPU:

        make -jn(n=number of cores) USE_GPU=0 (For Ubuntu 16.04)
        make -jn(n=number of cores)  CXX=g++-6 USE_GPU=0 (For Ubuntu 18.04)

If building on GPU:

       make -jn(n=number of cores) USE_GPU=1 (For Ubuntu 16.04)
       make -jn(n=number of cores)  CXX=g++-6 USE_GPU=1 (For Ubuntu 18.04)

On succesfull compilation a library called libmxnet.so is created in mxnet/lib path.

NOTE: USE_CUDA, USE_CUDNN flags can be changed in make/config.mk.

To compile on HIP/CUDA make sure to set USE_CUDA_PATH to right CUDA installation path in make/config.mk. In most cases it is - /usr/local/cuda.

Install the MXNet Python binding

  • Step 1: Install prerequisites - python, setup-tools, python-pip and numpy.
      sudo apt-get install -y python-dev python-setuptools python-numpy python-pip python-scipy
      sudo apt-get install python-tk
      sudo apt install -y fftw3 fftw3-dev pkg-config
  • Step 2: Install the MXNet Python binding.
      cd python
      sudo python setup.py install
  • Step 3: Execute sample example
       cd example/
       cd bayesian-methods/

To run on gpu change mx.cpu() to mx.gpu() in python script (Example- bdk_demo.py)

       $ python bdk_demo.py

Ask Questions

What's New

Contents

Features

  • Design notes providing useful insights that can re-used by other DL projects
  • Flexible configuration for arbitrary computation graph
  • Mix and match imperative and symbolic programming to maximize flexibility and efficiency
  • Lightweight, memory efficient and portable to smart devices
  • Scales up to multi GPUs and distributed setting with auto parallelism
  • Support for Python, R, Scala, C++ and Julia
  • Cloud-friendly and directly compatible with S3, HDFS, and Azure

License

Licensed under an Apache-2.0 license.

Reference Paper

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. In Neural Information Processing Systems, Workshop on Machine Learning Systems, 2015

History

MXNet emerged from a collaboration by the authors of cxxnet, minerva, and purine2. The project reflects what we have learned from the past projects. MXNet combines aspects of each of these projects to achieve flexibility, speed, and memory efficiency.

Owner
ROCm Software Platform
ROCm Software Platform Repository
ROCm Software Platform
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Rohit Ingole 2 Mar 24, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022