Neural Style and MSG-Net

Overview

PyTorch-Style-Transfer

This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included by ModelDepot. We also provide Torch implementation and MXNet implementation.

Tabe of content

MSG-Net

Multi-style Generative Network for Real-time Transfer [arXiv] [project]
Hang Zhang, Kristin Dana
@article{zhang2017multistyle,
	title={Multi-style Generative Network for Real-time Transfer},
	author={Zhang, Hang and Dana, Kristin},
	journal={arXiv preprint arXiv:1703.06953},
	year={2017}
}

Stylize Images Using Pre-trained MSG-Net

  1. Download the pre-trained model
    git clone [email protected]:zhanghang1989/PyTorch-Style-Transfer.git
    cd PyTorch-Style-Transfer/experiments
    bash models/download_model.sh
  2. Camera Demo
    python camera_demo.py demo --model models/21styles.model
  3. Test the model
    python main.py eval --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg --model models/21styles.model --content-size 1024
  • If you don't have a GPU, simply set --cuda=0. For a different style, set --style-image path/to/style. If you would to stylize your own photo, change the --content-image path/to/your/photo. More options:

    • --content-image: path to content image you want to stylize.
    • --style-image: path to style image (typically covered during the training).
    • --model: path to the pre-trained model to be used for stylizing the image.
    • --output-image: path for saving the output image.
    • --content-size: the content image size to test on.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Train Your Own MSG-Net Model

  1. Download the COCO dataset
    bash dataset/download_dataset.sh
  2. Train the model
    python main.py train --epochs 4
  • If you would like to customize styles, set --style-folder path/to/your/styles. More options:
    • --style-folder: path to the folder style images.
    • --vgg-model-dir: path to folder where the vgg model will be downloaded.
    • --save-model-dir: path to folder where trained model will be saved.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Neural Style

Image Style Transfer Using Convolutional Neural Networks by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg
  • --content-image: path to content image.
  • --style-image: path to style image.
  • --output-image: path for saving the output image.
  • --content-size: the content image size to test on.
  • --style-size: the style image size to test on.
  • --cuda: set it to 1 for running on GPU, 0 for CPU.

Acknowledgement

The code benefits from outstanding prior work and their implementations including:

Comments
  • training new model

    training new model

    @zhanghang1989 I trained a model with three style images. Now, I see eight .model files. Can you please tell me which .model file to use OR how to integrate them to single model file.

    Thanks Akash

    opened by akashdexati 7
  • Unable to resume training

    Unable to resume training

    Hey,

    So I started training a model, but seeing how long it was going to take I wanted to double check I could successfully resume training.

    I ran: python3 main.py train --epochs 4 --style-folder images/xmas-styles/ --save-model-dir trained_models/ until it generated the first checkpoint, then I ran python3 main.py train --epochs 4 --style-folder images/xmas-styles/ --save-model-dir trained_models/ --resume trained_models/Epoch_0iters_8000_Sat_Dec__9_18\:10\:43_2017_1.0_5.0.model and waiting for the first feedback report, which was Sat Dec 9 18:17:09 2017 Epoch 1: [2000/123287] content: 254020.831359 style: 1666218.549250 total: 1920239.380609 so it appeared to not have resumed at all.

    Also slight side question... Say I train with --epochs 4 til I get final model... If I were to use the last checkpoint before final to resume, but set --epochs 5 or higher, would that work correctly and just keep going through to 5 epochs before generating another final, and have no issues etc?

    opened by pingu2k4 6
  • Temporal coherence?

    Temporal coherence?

    Have you tried some technique for temporal coherence? If not, would you mind if I ask which one would you recommend or would like to try.

    Keep up the good work.

    opened by rraallvv 3
  • vgg16.t7 unhashable type: 'numpy.ndarray'

    vgg16.t7 unhashable type: 'numpy.ndarray'

    It's been a while since the last vgg16 issue i found on this "Issues".

    So i download the vgg16.t7 from the paper quoted in this github. And i run this command "python main.py train --epochs 4 --style-folder images/ownstyles --save-model-dir own_models --cuda 1" i have put the vgg16.t7 into models folder, it's been detected correctly. However, the following problem happened.

    Traceback (most recent call last):
      File "main.py", line 295, in <module>
        main()
      File "main.py", line 41, in main
        train(args)
      File "main.py", line 135, in train
        utils.init_vgg16(args.vgg_model_dir)
      File "C:\Users\user\Prepwork\Cap Project\PyTorch-Multi-Style-Transfer\experiments\utils.py", line 100, in init_vgg16
        vgglua = load_lua(os.path.join(model_folder, 'vgg16.t7'))
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 424, in load
        return reader.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj
        obj._obj = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 385, in read_obj
        k = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 386, in read_obj
        v = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj
        obj._obj = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 387, in read_obj
        obj[k] = v
    TypeError: unhashable type: 'numpy.ndarray'
    

    Is there anyway i can fix this? i found in other thread they said replace with another one, but i could not find another one other than from stanford.

    Thanks!

    opened by fuddyduddy 2
  • Fix colab notebook

    Fix colab notebook

    Hi. Made some changes to notebook:

    • fixed RuntimeError #21, #32, that was fixed in #31 and #37, but not for msgnet.ipynb;
    • removed unused import torch.nn.functional;
    • prettified according to pep8;
    • changed os.system('wget ...') to direct calling !wget ... without importing os module.

    Tested in colab (run all), the notebook works as expected without errors.

    opened by amrzv 1
  • Establish Docker directory

    Establish Docker directory

    What: Establishes a Docker directory with Dockerfile and run script

    Why: The original repo was written for an outdated version of PyTorch, which makes it hard to run on modern systems without conflicting with updated versions of the dependencies.

    Build the container with

    cd Docker
    docker build -t style-transfer .
    
    opened by ss32 1
  • Fix compatibility issues with torch==1.1.0

    Fix compatibility issues with torch==1.1.0

    RuntimeError: Error(s) in loading state_dict for Net:
    	Unexpected running stats buffer(s) "model1.1.running_mean" and "model1.1.running_var" for InstanceNorm2d with track_running_stats=False. If state_dict is a checkpoint saved before 0.4.0, this may be expected because InstanceNorm2d does not track running stats by default since 0.4.0. Please remove these keys from state_dict. If the running stats are actually needed, instead set track_running_stats=True in InstanceNorm2d to enable them. See the documentation of InstanceNorm2d for details.
    
    opened by jianchao-li 1
  • set default values

    set default values

    Hi,

    I try run the camera.py with the arguments discribed in the docs , but fail because inside the code dont have values for args.demo_size and img.copy too Whats the default values for set these variables?

    Thank you

    opened by gledsoul 1
  • Super Slow at optim on linux Mint

    Super Slow at optim on linux Mint

    Have this on a fresh install of linux Mint. I'm running the example, 'python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg' and its taking FOREVER to do anything. I used to have it working at a decent speed on Ubuntu on the same hardware.

    When inspecting GPU and CPU usage, I see it start off with minimal GPU usage, and huge CPU usage. it slowly increases GPU usage over time until it has enough and then completes the rest in around the same time as before. As an example, it takes around 8 minutes to figure out that there isn't enough VRAM for the selected image size, whereas previously on my Ubuntu installation that would take a matter of seconds. Any idea why it would take so much longer on Mint? And what I can do to remedy this?

    opened by pingu2k4 1
  • "TypeError: 'torch.FloatTensor' object is not callable" running demo on CPU

    Sorry if I'm missing something, I'm unfamiliar with PyTorch. I'm running the demo on CPU on a Mac and getting the following error:

      File "camera_demo.py", line 93, in <module>
        main()
      File "camera_demo.py", line 90, in main
        run_demo(args, mirror=True)
      File "camera_demo.py", line 60, in run_demo
        simg = style_v.data().numpy()
    TypeError: 'torch.FloatTensor' object is not callable
    

    Thanks.

    opened by Carmezim 1
  • optim with normal RAM?

    optim with normal RAM?

    Hi,

    So I spent around 24 hours so far training a model on my style images, got the results out by using the model on eval and so far they're not great. When I use the optim function with the styles however the results are pretty decent, however I am limited by my VRAM which is 6GB as to what size images I can output. Having a lot more RAM available, I was hoping I could do pretty decently sized images, but it seems that I can only get much larger images with eval. Does eval use normal RAM instead of VRAM?

    I will continue training my model so that I can use eval in the future, whether I can do larger images with optim or not, but no idea how much more training is required to make it anywhere near a respectable result.

    What sort of overall loss value should I be aiming for? Does the number of style images make a difference to what I should expect?

    opened by pingu2k4 1
  • Error Training TypeError: 'NoneType' object is not callable

    Error Training TypeError: 'NoneType' object is not callable

    I was able to get my environment setup successfully to run eval; however, now, trying train I'm running into an issue. Not sure if it's a syntax issues or if something else is going on? You help is greatly appreciated.

    
    #!/bin/bash
    #SBATCH --job-name=train-pytorch
    #SBATCH --mail-type=END,FAIL
    #SBATCH [email protected]
    #SBATCH --ntasks=1
    #SBATCH --time=00:10:00
    #SBATCH --mem=8000
    #SBATCH --gres=gpu:p100:2
    #SBATCH --cpus-per-task=6
    #SBATCH --output=%x_%j.log
    #SBATCH --error=%x_%j.err
    
    source ~/scratch/moldach/PyTorch-Style-Transfer/experiments/venv/bin/activate
    
    python main.py train \
      --epochs 4 \
      --style-folder /scratch/moldach/PyTorch-Style-Transfer/experiments/images/9styles \
      --vgg-model-dir vgg-model/ \
      --save-model-dir checkpoint/
    
    
    /scratch/moldach/first-order-model/venv/lib/python3.6/site-packages/torchvision/transforms/transforms.py:188: UserWarning: The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.
      "please use transforms.Resize instead.")
    Traceback (most recent call last):
      File "main.py", line 295, in <module>
        main()
      File "main.py", line 41, in main
        train(args)
      File "main.py", line 135, in train
        utils.init_vgg16(args.vgg_model_dir)
      File "/scratch/moldach/PyTorch-Style-Transfer/experiments/utils.py", line 102, in init_vgg16
        for (src, dst) in zip(vgglua.parameters()[0], vgg.parameters()):
    TypeError: 'NoneType' object is not callable
    
    

    pip freeze:

    $ pip freeze
    -f /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/nix/avx2
    -f /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/nix/generic
    -f /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/generic
    cffi==1.11.5
    cloudpickle==0.5.3
    cycler==0.10.0
    dask==0.18.2
    dataclasses==0.8
    decorator==4.4.2
    future==0.18.2
    imageio==2.9.0
    imageio-ffmpeg==0.4.3
    kiwisolver==1.3.1
    matplotlib==3.3.4
    networkx==2.5
    numpy==1.19.1
    pandas==0.23.4
    Pillow==8.1.2
    pycparser==2.18
    pygit==0.1
    pyparsing==2.4.7
    python-dateutil==2.8.1
    pytz==2018.5
    PyWavelets==1.1.1
    PyYAML==5.1
    scikit-image==0.17.2
    scikit-learn==0.19.2
    scipy==1.4.1
    six==1.15.0
    tifffile==2020.9.3
    toolz==0.9.0
    torch==1.7.0
    torchfile==0.1.0
    torchvision==0.2.1
    tqdm==4.24.0
    typing-extensions==3.7.4.3
    
    opened by moldach 4
  • Color produced by eval doesn't match demo

    Color produced by eval doesn't match demo

    Hi ! Thanks for sharing the code. I've ran the eval program using the defaults provided and I noticed the color tends to be much dimmer than what is shown on the homepage here. Is there something that I am missing? The command I used was

    python main.py --style-image ./images/21styles/udnie.jpg --content-image ./images/content/venice-boat.jpg

    out

    opened by clarng 1
  • struct.error: unpack requires a buffer of 4 bytes

    struct.error: unpack requires a buffer of 4 bytes

    Dear author, Thank you so much for sharing a useful code. I able to run your evaluation code, but face the following error during runing of training code: File "main.py", line 41, in main train(args) File "main.py", line 135, in train utils.init_vgg16(args.vgg_model_dir) File "/home2/st118370/models/PyTorch-Multi-Style-Transfer/experiments/utils.py", line 100, in init_vgg16 vgglua = load_lua(os.path.join(model_folder, 'vgg16.t7')) File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 424, in load return reader.read_obj() File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 310, in read_obj typeidx = self.read_int() File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 277, in read_int return self._read('i')[0] File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 271, in _read return struct.unpack(fmt, self.f.read(sz)) struct.error: unpack requires a buffer of 4 bytes

    how can i resolve this problem? kindly guide. thanks

    opened by MFarooqAit 1
  • vgg16.t7  unhashable type: 'numpy.ndarray

    vgg16.t7 unhashable type: 'numpy.ndarray

    hi

    I have put the vgg16.t7 into models folder, it's been detected correctly. However, the following problem happened.

    Traceback (most recent call last): File "main.py", line 295, in main() File "main.py", line 41, in main train(args) File "main.py", line 135, in train utils.init_vgg16(args.vgg_model_dir) File "C:\Users\user\Prepwork\Cap Project\PyTorch-Multi-Style-Transfer\experiments\utils.py", line 100, in init_vgg16 vgglua = load_lua(os.path.join(model_folder, 'vgg16.t7')) File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 424, in load return reader.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj obj._obj = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 385, in read_obj k = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 386, in read_obj v = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj obj._obj = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 387, in read_obj obj[k] = v TypeError: unhashable type: 'numpy.ndarray'

    It does't work for pytorch-1.0.0 and 1.4.0, and giving the same error, how to deal with it? thanks !

    opened by Gavin-Evans 13
  • Different brush stroke size

    Different brush stroke size

    In your paper you wrote about the ability to train the model with different sizes of the style images to later get control over the brush stroke size. Did you implement this in either the pytorch or torch implementation? Greetings and keep up the great work

    opened by lpiribauer 0
Releases(v0.1)
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022