Retrieval.pytorch - The code we used in [2020 DIGIX]

Overview

retrieval.pytorch

dependence

  • python3
  • pytorch
  • numpy
  • scikit-learn
  • tqdm
  • yacs

You can install yacs by pip. Other dependencies can be installed by 'conda'.

prepare dataset

first, you need to download the dataset from here. Then, you can move them into the directory $DATASET and decompress them by

unzip train_data.zip
unzip test_data_A.zip
unzip test_data_B.zip

Then remove the empty directory in train_data:

cd train_data
rm -rf DIGIX_001453
rm -rf DIGIX_001639
rm -rf DIGIX_002284

Finally, you need to edit the file src/dataset/datasets.py and set the correct values for traindir, test_A_dir, test_B_dir.

traindir = '$DATASET/train_data'
test_A_dir = '$DATASET/test_data_A'
test_B_dir = '$DATASET/test_data_B'

Train the network to extract feature

You can train dla102x and resnet101 by the below comands.

python experiments/DIGIX/dla102x/cgd_margin_loss.py
python experiments/DIGIX/resnet101/cgd_margin_loss.py

To train fishnet99, hrnet_w18 and hrnet_w30, you need to download their imagenet pretrained weights from here. Specifically, download fishnet99_ckpt.tar for fishnet99, download hrnetv2_w18_imagenet_pretrained.pth for hrnet_w18, download hrnetv2_w30_imagenet_pretrained.pth for hrnet_w30. Then you need to move these weights to ~/.cache/torch/hub/checkpoints to make sure torch.hub.load_state_dict_from_url can find them.

Then, you can train fishnet99, hrnet_w18, hrnet_w30 by

python experiments/DIGIX/fishnet99/cgd_margin_loss.py
python experiments/DIGIX/hrnet_w18/cgd_margin_loss.py
python experiments/DIGIX/hrnet_w30/cgd_margin_loss.py

After Training, the model weights can be found in results/DIGIX/{model}/cgd_margin_loss/{time}/transient/checkpoint.final.ckpt. We also provide these weights file.

extract features for retrieval

You can download the pretrained model from here and move them to pretrained directory.

Then, run the below comands.

python experiments/DIGIX_test_B/dla102x/cgd_margin_loss_test_B.py
python experiments/DIGIX_test_B/resnet101/cgd_margin_loss_test_B.py
python experiments/DIGIX_test_B/fishnet99/cgd_margin_loss_test_B.py
python experiments/DIGIX_test_B/hrnet_w18/cgd_margin_loss_test_B.py
python experiments/DIGIX_test_B/hrnet_w30/cgd_margin_loss_test_B.py

When finished, the query feature for test_data_B can be found in results/DIGIX_test_B/{model}/cgd_margin_loss_test_B/{time}/query_feat. And the gallery feature can be found in results/DIGIX_test_B/{model}/cgd_margin_loss_test_B/{time}/gallery_feat.

Post process

You can download features from here. Then, you can put it into the directory features and decompress the files by

tar -xvf DIGIX_test_B_dla102x_5088.tar
tar -xvf DIGIX_test_B_fishnet99_5153.tar
tar -xvf DIGIX_test_B_hrnet_w18_5253.tar
tar -xvf DIGIX_test_B_hrnet_w30_5308.tar
tar -xvf DIGIX_test_B_resnet101_5059.tar

Then the features directory will be organized like this:

|-- DIGIX_test_B_dla102x_5088.tar  
|-- DIGIX_test_B_fishnet99_5153.tar  
|-- DIGIX_test_B_hrnet_w18_5253.tar  
|-- DIGIX_test_B_hrnet_w30_5308.tar  
|-- DIGIX_test_B_resnet101_5059.tar 
|-- DIGIX_test_B_dla102x_5088  
| |-- gallery_feat  
| |-- query_feat  
|-- DIGIX_test_B_fishnet99_5153  
| |-- gallery_feat  
| |-- query_feat  
|-- DIGIX_test_B_hrnet_w18_5253  
| |-- gallery_feat  
| |-- query_feat  
|-- DIGIX_test_B_hrnet_w30_5308  
| |-- gallery_feat  
| |-- query_feat  
|-- DIGIX_test_B_resnet101_5059  
| |-- gallery_feat  
| |-- query_feat  

Now, post process can be executed by

python post_process/rank.py --gpu 0 features/DIGIX_test_B_fishnet99_5153 features/DIGIX_test_B_dla102x_5088 features/DIGIX_test_B_hrnet_w18_5253 features/DIGIX_test_B_hrnet_w30_5308 features/DIGIX_test_B_resnet101_5059
Owner
Guo-Hua Wang
Guo-Hua Wang
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022