Model-based Reinforcement Learning Improves Autonomous Racing Performance

Overview

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars

In this work, we propose to learn a racing controller directly from raw Lidar observations.

The resulting policy has been evaluated on F1tenth-like tracks and then transfered to real cars.

Racing Dreamer

The free version is available on arXiv.

If you find this code useful, please reference in your paper:

@misc{brunnbauer2021modelbased,
      title={Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars}, 
      author={Axel Brunnbauer and Luigi Berducci and Andreas Brandstätter and Mathias Lechner and Ramin Hasani and Daniela Rus and Radu Grosu},
      year={2021},
      eprint={2103.04909},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

This repository is organized as follows:

  • Folder dreamer contains the code related to the Dreamer agent.
  • Folder baselines contains the code related to the Model Free algorihtms (D4PG, MPO, PPO, LSTM-PPO, SAC).
  • Folder ros_agent contains the code related to the transfer on real racing cars.
  • Folder docs contains the track maps, mechanical and general documentation.

Dreamer

"Dreamer learns a world model that predicts ahead in a compact feature space. From imagined feature sequences, it learns a policy and state-value function. The value gradients are backpropagated through the multi-step predictions to efficiently learn a long-horizon policy."

This implementation extends the original implementation of Dreamer (Hafner et al. 2019).

We refer the reader to the Dreamer website for the details on the algorithm.

Dreamer

Instructions

This code has been tested on Ubuntu 18.04 with Python 3.7.

Get dependencies:

pip install --user -r requirements.txt

Training

We train Dreamer on LiDAR observations and propose two Reconstruction variants: LiDAR and Occupancy Map.

Reconstruction Variants

Train the agent with LiDAR reconstruction:

python dreamer/dream.py --track columbia --obs_type lidar

Train the agent with Occupancy Map reconstruction:

python dream.py --track columbia --obs_type lidar_occupancy

Please, refer to dream.py for the other command-line arguments.

Offline Evaluation

The evaluation module runs offline testing of a trained agent (Dreamer, D4PG, MPO, PPO, SAC).

To run evaluation, assuming to have the dreamer directory in the PYTHONPATH:

python evaluations/run_evaluation.py --agent dreamer \
                                     --trained_on austria \
                                     --obs_type lidar \
                                     --checkpoint_dir logs/checkpoints \
                                     --outdir logs/evaluations \
                                     --eval_episodes 10 \
                                     --tracks columbia barcelona 

The script will look for all the checkpoints with pattern logs/checkpoints/austria_dreamer_lidar_* The checkpoint format depends on the saving procedure (pkl, zip or directory).

The results are stored as tensorflow logs.

Plotting

The plotting module containes several scripts to visualize the results, usually aggregated over multiple experiments.

To plot the learning curves:

python plotting/plot_training_curves.py --indir logs/experiments \
                                                --outdir plots/learning_curves \
                                                --methods dreamer mpo \
                                                --tracks austria columbia treitlstrasse_v2 \
                                                --legend

It will produce the comparison between Dreamer and MPO on the tracks Austria, Columbia, Treitlstrasse_v2.

To plot the evaluation results:

python plotting/plot_test_evaluation.py --indir logs/evaluations \
                                                --outdir plots/evaluation_charts \
                                                --methods dreamer mpo \
                                                --vis_tracks austria columbia treitlstrasse_v2 \
                                                --legend

It will produce the bar charts comparing Dreamer and MPO evaluated in Austria, Columbia, Treitlstrasse_v2.

Instructions with Docker

We also provide an docker image based on tensorflow:2.3.1-gpu. You need nvidia-docker to run them, see here for more details.

To build the image:

docker build -t dreamer .

To train Dreamer within the container:

docker run -u $(id -u):$(id -g) -v $(pwd):/src --gpus all --rm dreamer python dream.py --track columbia --steps 1000000

Model Free

The organization of Model-Free codebase is similar and we invite the users to refer to the README for the detailed instructions.

Hardware

The codebase for the implementation on real cars is contained in ros_agent.

Additional material:

  • Folder docs/maps contains a collection of several tracks to be used in F1Tenth races.
  • Folder docs/mechanical contains support material for real world race-tracks.
Owner
Cyber Physical Systems - TU Wien
Cyber Physical Systems - TU Wien
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022