[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Overview

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie Zhou, Jiwen Lu

This repository contains PyTorch implementation for Bridge-Prompt (CVPR 2022).

We propose a prompt-based framework, Bridge-Prompt (Br-Prompt), to model the semantics across multiple adjacent correlated actions, so that it simultaneously exploits both out-of-context and contextual information from a series of ordinal actions in instructional videos. More specifically, we reformulate the individual action labels as integrated text prompts for supervision, which bridge the gap between individual action semantics. The generated text prompts are paired with corresponding video clips, and together co-train the text encoder and the video encoder via a contrastive approach. The learned vision encoder has a stronger capability for ordinal-action-related downstream tasks, e.g. action segmentation and human activity recognition.

intro

Our code is based on CLIP and ActionCLIP.

Prerequisites

Requirements

You may need ffmpeg for video data pre-processing.

The environment is also recorded in requirements.txt, which can be reproduced by

pip install -r requirements.txt

Pretrained models

We use the base model (ViT-B/16 for image encoder & text encoder) pre-trained by ActionCLIP based on Kinetics-400. The model can be downloaded in link (pwd:ilgw). The pre-trained model should be saved in ./models/.

Datasets

Raw video files are needed to train our framework. Please download the datasets with RGB videos from the official websites ( Breakfast / GTEA / 50Salads ) and save them under the folder ./data/(name_dataset). For convenience, we have used the extracted frames of the raw RGB videos as inputs. You can extract the frames from raw RGB datasets by running:

python preprocess/get_frames.py --dataset (name_dataset) --vpath (folder_to_your_videos) --fpath ./data/(name_dataset)/frames/

To be noticed, ffmpeg is needed here for frame extraction.

Furthermore, please also extract the .zip files to ./data/(name_dataset) respectively.

Training

  • To train Bridge-Prompt on Breakfast from Kinetics400 pretrained models, you can run:
bash scripts/run_train.sh  ./configs/breakfast/breakfast_ft.yaml
  • To train Bridge-Prompt on GTEA from Kinetics400 pretrained models, you can run:
bash scripts/run_train.sh  ./configs/gtea/gtea_ft.yaml
  • To train Bridge-Prompt on 50Salads from Kinetics400 pretrained models, you can run:
bash scripts/run_train.sh  ./configs/salads/salads_ft.yaml

Extracting frame features

We use the Bridge-Prompt pre-trained image encoders to extract frame-wise features for further downstream tasks (e.g. action segmentation). You can run the following command for each dataset respectively:

python extract_frame_features.py --config ./configs/(dataset_name)/(dataset_name)_exfm.yaml --dataset (dataset_name)

Since 50Salads/Breakfast are large scale datasets, we extract the frame features by window splits. To combine the splits, please run the following command:

python preprocess/combine_features.py

Please modify the variables dataset and feat_name in combine_features.py for each dataset.

Action segmentation

You can reproduce the action segmentation results using ASFormer by the previously extracted frame features.

Activity recognition

You can reproduce the activity recognition results using the command:

python ft_acti.py

based on the previously extracted frame features (Breakfast).

Ordinal action recognition

The ordinal action inferences are executed using the command:

bash scripts/run_test.sh  ./configs/(dataset_name)/(dataset_name)_test.yaml

and check the accuracies using:

bash preprocess/checknpy.py

Please modify the variables dataset in checknpy.py for each dataset.

Notes

Please modify pretrain in all config files according to your own working directions.

License

MIT License.

Owner
Graduate student of Tsinghua University. Major in Automation.
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022