[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Overview

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie Zhou, Jiwen Lu

This repository contains PyTorch implementation for Bridge-Prompt (CVPR 2022).

We propose a prompt-based framework, Bridge-Prompt (Br-Prompt), to model the semantics across multiple adjacent correlated actions, so that it simultaneously exploits both out-of-context and contextual information from a series of ordinal actions in instructional videos. More specifically, we reformulate the individual action labels as integrated text prompts for supervision, which bridge the gap between individual action semantics. The generated text prompts are paired with corresponding video clips, and together co-train the text encoder and the video encoder via a contrastive approach. The learned vision encoder has a stronger capability for ordinal-action-related downstream tasks, e.g. action segmentation and human activity recognition.

intro

Our code is based on CLIP and ActionCLIP.

Prerequisites

Requirements

You may need ffmpeg for video data pre-processing.

The environment is also recorded in requirements.txt, which can be reproduced by

pip install -r requirements.txt

Pretrained models

We use the base model (ViT-B/16 for image encoder & text encoder) pre-trained by ActionCLIP based on Kinetics-400. The model can be downloaded in link (pwd:ilgw). The pre-trained model should be saved in ./models/.

Datasets

Raw video files are needed to train our framework. Please download the datasets with RGB videos from the official websites ( Breakfast / GTEA / 50Salads ) and save them under the folder ./data/(name_dataset). For convenience, we have used the extracted frames of the raw RGB videos as inputs. You can extract the frames from raw RGB datasets by running:

python preprocess/get_frames.py --dataset (name_dataset) --vpath (folder_to_your_videos) --fpath ./data/(name_dataset)/frames/

To be noticed, ffmpeg is needed here for frame extraction.

Furthermore, please also extract the .zip files to ./data/(name_dataset) respectively.

Training

  • To train Bridge-Prompt on Breakfast from Kinetics400 pretrained models, you can run:
bash scripts/run_train.sh  ./configs/breakfast/breakfast_ft.yaml
  • To train Bridge-Prompt on GTEA from Kinetics400 pretrained models, you can run:
bash scripts/run_train.sh  ./configs/gtea/gtea_ft.yaml
  • To train Bridge-Prompt on 50Salads from Kinetics400 pretrained models, you can run:
bash scripts/run_train.sh  ./configs/salads/salads_ft.yaml

Extracting frame features

We use the Bridge-Prompt pre-trained image encoders to extract frame-wise features for further downstream tasks (e.g. action segmentation). You can run the following command for each dataset respectively:

python extract_frame_features.py --config ./configs/(dataset_name)/(dataset_name)_exfm.yaml --dataset (dataset_name)

Since 50Salads/Breakfast are large scale datasets, we extract the frame features by window splits. To combine the splits, please run the following command:

python preprocess/combine_features.py

Please modify the variables dataset and feat_name in combine_features.py for each dataset.

Action segmentation

You can reproduce the action segmentation results using ASFormer by the previously extracted frame features.

Activity recognition

You can reproduce the activity recognition results using the command:

python ft_acti.py

based on the previously extracted frame features (Breakfast).

Ordinal action recognition

The ordinal action inferences are executed using the command:

bash scripts/run_test.sh  ./configs/(dataset_name)/(dataset_name)_test.yaml

and check the accuracies using:

bash preprocess/checknpy.py

Please modify the variables dataset in checknpy.py for each dataset.

Notes

Please modify pretrain in all config files according to your own working directions.

License

MIT License.

Owner
Graduate student of Tsinghua University. Major in Automation.
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022