[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Overview

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie Zhou, Jiwen Lu

This repository contains PyTorch implementation for Bridge-Prompt (CVPR 2022).

We propose a prompt-based framework, Bridge-Prompt (Br-Prompt), to model the semantics across multiple adjacent correlated actions, so that it simultaneously exploits both out-of-context and contextual information from a series of ordinal actions in instructional videos. More specifically, we reformulate the individual action labels as integrated text prompts for supervision, which bridge the gap between individual action semantics. The generated text prompts are paired with corresponding video clips, and together co-train the text encoder and the video encoder via a contrastive approach. The learned vision encoder has a stronger capability for ordinal-action-related downstream tasks, e.g. action segmentation and human activity recognition.

intro

Our code is based on CLIP and ActionCLIP.

Prerequisites

Requirements

You may need ffmpeg for video data pre-processing.

The environment is also recorded in requirements.txt, which can be reproduced by

pip install -r requirements.txt

Pretrained models

We use the base model (ViT-B/16 for image encoder & text encoder) pre-trained by ActionCLIP based on Kinetics-400. The model can be downloaded in link (pwd:ilgw). The pre-trained model should be saved in ./models/.

Datasets

Raw video files are needed to train our framework. Please download the datasets with RGB videos from the official websites ( Breakfast / GTEA / 50Salads ) and save them under the folder ./data/(name_dataset). For convenience, we have used the extracted frames of the raw RGB videos as inputs. You can extract the frames from raw RGB datasets by running:

python preprocess/get_frames.py --dataset (name_dataset) --vpath (folder_to_your_videos) --fpath ./data/(name_dataset)/frames/

To be noticed, ffmpeg is needed here for frame extraction.

Furthermore, please also extract the .zip files to ./data/(name_dataset) respectively.

Training

  • To train Bridge-Prompt on Breakfast from Kinetics400 pretrained models, you can run:
bash scripts/run_train.sh  ./configs/breakfast/breakfast_ft.yaml
  • To train Bridge-Prompt on GTEA from Kinetics400 pretrained models, you can run:
bash scripts/run_train.sh  ./configs/gtea/gtea_ft.yaml
  • To train Bridge-Prompt on 50Salads from Kinetics400 pretrained models, you can run:
bash scripts/run_train.sh  ./configs/salads/salads_ft.yaml

Extracting frame features

We use the Bridge-Prompt pre-trained image encoders to extract frame-wise features for further downstream tasks (e.g. action segmentation). You can run the following command for each dataset respectively:

python extract_frame_features.py --config ./configs/(dataset_name)/(dataset_name)_exfm.yaml --dataset (dataset_name)

Since 50Salads/Breakfast are large scale datasets, we extract the frame features by window splits. To combine the splits, please run the following command:

python preprocess/combine_features.py

Please modify the variables dataset and feat_name in combine_features.py for each dataset.

Action segmentation

You can reproduce the action segmentation results using ASFormer by the previously extracted frame features.

Activity recognition

You can reproduce the activity recognition results using the command:

python ft_acti.py

based on the previously extracted frame features (Breakfast).

Ordinal action recognition

The ordinal action inferences are executed using the command:

bash scripts/run_test.sh  ./configs/(dataset_name)/(dataset_name)_test.yaml

and check the accuracies using:

bash preprocess/checknpy.py

Please modify the variables dataset in checknpy.py for each dataset.

Notes

Please modify pretrain in all config files according to your own working directions.

License

MIT License.

Owner
Graduate student of Tsinghua University. Major in Automation.
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022