PyKaldi GOP-DNN on Epa-DB

Overview

PyKaldi GOP-DNN on Epa-DB

This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spanish speakers from Argentina. It uses a PyTorch acoustic model based on Kaldi's TDNN-F acoustic model. A script is provided to convert Kaldi's model to PyTorch. Kaldi's model must be downloaded separately from the Kaldi website

If you use this code or the Epa database, please cite the following paper:

J. Vidal, L. Ferrer, L. Brambilla, "EpaDB: a database for the development of pronunciation assessment systems", isca-speech

@article{vidal2019epadb,
  title={EpaDB: a database for development of pronunciation assessment systems},
  author={Vidal, Jazmin and Ferrer, Luciana and Brambilla, Leonardo},
  journal={Proc. Interspeech 2019},
  pages={589--593},
  year={2019}
}

Table of Contents

Introduction

This toolkit is meant to facilitate experimentation with Epa-DB by allowing users to run a state-of-the-art baseline system on it. Epa-DB, is a database of non-native English speech by argentinian speakers of Spanish. It is intended for research on mispronunciation detection and development of pronunciation assessment systems. The database includes recordings from 30 non-native speakers of English, 15 male and 15 female, whose first language (L1) is Spanish from Argentina (mainly of the Rio de la Plata dialect). Each speaker recorded 64 short English phrases phonetically balanced and specifically designed to globally contain all the sounds difficult to pronounce for the target population. All recordings were annotated at phone level by expert raters.

For more information on the database, please refer to the documentation or publication

If you are only looking for the EpaDB corpus, you can download it from this link.

Prerequisites

  1. Kaldi installed.

  2. TextGrid managing library installed using pip. Instructions at this link.

  3. The EpaDB database downloaded. Alternative link.

  4. Librispeech ASR model

How to install

To install this repository, do the following steps:

  1. Clone this repository:
git clone https://github.com/MarceloSancinetti/epa-gop-pykaldi.git
  1. Download Librispeech ASR acoustic model from Kaldi and move it or link it inside the top directory of the repository:
wget https://kaldi-asr.org/models/13/0013_librispeech_v1_chain.tar.gz
tar -zxvf 0013_librispeech_v1_chain.tar.gz
  1. Convert the acoustic model to text format:
nnet3-copy --binary=false exp/chain_cleaned/tdnn_1d_sp/final.mdl exp/chain_cleaned/tdnn_1d_sp/final.txt
  1. Install the requirements:
pip install -r requirements.txt
  1. Install PyKaldi:

Follow instructions from https://github.com/pykaldi/pykaldi#installation

  1. Convert the acoustic model to Pytorch:
python convert_chain_to_pytorch.py
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022