Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Overview

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements

[paper (NeurIPS 2021)] [paper (arXiv)] [code]

Authors: Zinan Lin, Vyas Sekar, Giulia Fanti

Abstract: Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs). However, there is currently limited understanding of why SN is effective. In this work, we show that SN controls two important failure modes of GAN training: exploding and vanishing gradients. Our proofs illustrate a (perhaps unintentional) connection with the successful LeCun initialization. This connection helps to explain why the most popular implementation of SN for GANs requires no hyper-parameter tuning, whereas stricter implementations of SN have poor empirical performance out-of-the-box. Unlike LeCun initialization which only controls gradient vanishing at the beginning of training, SN preserves this property throughout training. Building on this theoretical understanding, we propose a new spectral normalization technique: Bidirectional Scaled Spectral Normalization (BSSN), which incorporates insights from later improvements to LeCun initialization: Xavier initialization and Kaiming initialization. Theoretically, we show that BSSN gives better gradient control than SN. Empirically, we demonstrate that it outperforms SN in sample quality and training stability on several benchmark datasets.


This repo contains the codes for reproducing the experiments of our BSN and different SN variants in the paper. The codes were tested under Python 2.7.5, TensorFlow 1.14.0.

Preparing datasets

CIFAR10

Download cifar-10-python.tar.gz from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz (or from other sources).

STL10

Download stl10_binary.tar.gz from http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz (or from other sources), and put it in dataset_preprocess/STL10 folder. Then run python preprocess.py. This code will resize the images into 48x48x3 format, and save the images in stl10.npy.

CelebA

Download img_align_celeba.zip from https://www.kaggle.com/jessicali9530/celeba-dataset (or from other sources), and put it in dataset_preprocess/CelebA folder. Then run python preprocess.py. This code will crop and resize the images into 64x64x3 format, and save the images in celeba.npy.

ImageNet

Download ILSVRC2012_img_train.tar from http://www.image-net.org/ (or from other sources), and put it in dataset_preprocess/ImageNet folder. Then run python preprocess.py. This code will crop and resize the images into 128x128x3 format, and save the images in ILSVRC2012folder. Each subfolder in ILSVRC2012 folder corresponds to one class. Each npy file in the subfolders corresponds to an image.

Training BSN and SN variants

Prerequisites

The codes are based on GPUTaskScheduler library, which helps you automatically schedule the jobs among GPU nodes. Please install it first. You may need to change GPU configurations according to the devices you have. The configurations are set in config.py in each directory. Please refer to GPUTaskScheduler's GitHub page for the details of how to make proper configurations.

You can also run these codes without GPUTaskScheduler. Just run python gan.py in gan subfolders.

CIFAR10, STL10, CelebA

Preparation

Copy the preprocessed datasets from the previous steps into the following paths:

  • CIFAR10: /data/CIFAR10/cifar-10-python.tar.gz.
  • STL10: /data/STL10/cifar-10-stl10.npy.
  • CelebA: /data/CelebA/celeba.npy.

Here means

  • Vanilla SN and our proposed BSSN/SSN/BSN without gammas: no_gamma-CNN.
  • SN with the same gammas: same_gamma-CNN.
  • SN with different gammas: diff_gamma-CNN.

Alternatively, you can directly modify the dataset paths in /gan_task.py to the path of the preprocessed dataset folders.

Running codes

Now you can directly run python main.py in each to train the models.

All the configurable hyper-parameters can be set in config.py. The hyper-parameters in the file are already set for reproducing the results in the paper. Please refer to GPUTaskScheduler's GitHub page for the details of the grammar of this file.

ImageNet

Preparation

Copy the preprocessed folder ILSVRC2012 from the previous steps to /data/imagenet/ILSVRC2012, where means

  • Vanilla SN and our proposed BSSN/SSN/BSN without gammas: no_gamma-ResNet.

Alternatively, you can directly modify the dataset path in /gan_task.py to the path of the preprocessed folder ILSVRC2012.

Running codes

Now you can directly run python main.py in each to train the models.

All the configurable hyper-parameters can be set in config.py. The hyper-parameters in the file are already set for reproducing the results in the paper. Please refer to GPUTaskScheduler's GitHub page for the details of the grammar of this file.

The code supports multi-GPU training for speed-up, by separating each data batch equally among multiple GPUs. To do that, you only need to make minor modifications in config.py. For example, if you have two GPUs with IDs 0 and 1, then all you need to do is to (1) change "gpu": ["0"] to "gpu": [["0", "1"]], and (2) change "num_gpus": [1] to "num_gpus": [2]. Note that the number of GPUs might influence the results because in this implementation the batch normalization layers on different GPUs are independent. In our experiments, we were using only one GPU.

Results

The code generates the following result files/folders:

  • /results/ /worker.log : Standard output and error from the code.
  • /results/ /metrics.csv : Inception Score and FID during training.
  • /results/ /sample/*.png : Generated images during training.
  • /results/ /checkpoint/* : TensorFlow checkpoints.
  • /results/ /time.txt : Training iteration timestamps.
Owner
Zinan Lin
Ph.D. student at Electrical and Computer Engineering, Carnegie Mellon University
Zinan Lin
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023