Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Overview

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements

[paper (NeurIPS 2021)] [paper (arXiv)] [code]

Authors: Zinan Lin, Vyas Sekar, Giulia Fanti

Abstract: Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs). However, there is currently limited understanding of why SN is effective. In this work, we show that SN controls two important failure modes of GAN training: exploding and vanishing gradients. Our proofs illustrate a (perhaps unintentional) connection with the successful LeCun initialization. This connection helps to explain why the most popular implementation of SN for GANs requires no hyper-parameter tuning, whereas stricter implementations of SN have poor empirical performance out-of-the-box. Unlike LeCun initialization which only controls gradient vanishing at the beginning of training, SN preserves this property throughout training. Building on this theoretical understanding, we propose a new spectral normalization technique: Bidirectional Scaled Spectral Normalization (BSSN), which incorporates insights from later improvements to LeCun initialization: Xavier initialization and Kaiming initialization. Theoretically, we show that BSSN gives better gradient control than SN. Empirically, we demonstrate that it outperforms SN in sample quality and training stability on several benchmark datasets.


This repo contains the codes for reproducing the experiments of our BSN and different SN variants in the paper. The codes were tested under Python 2.7.5, TensorFlow 1.14.0.

Preparing datasets

CIFAR10

Download cifar-10-python.tar.gz from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz (or from other sources).

STL10

Download stl10_binary.tar.gz from http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz (or from other sources), and put it in dataset_preprocess/STL10 folder. Then run python preprocess.py. This code will resize the images into 48x48x3 format, and save the images in stl10.npy.

CelebA

Download img_align_celeba.zip from https://www.kaggle.com/jessicali9530/celeba-dataset (or from other sources), and put it in dataset_preprocess/CelebA folder. Then run python preprocess.py. This code will crop and resize the images into 64x64x3 format, and save the images in celeba.npy.

ImageNet

Download ILSVRC2012_img_train.tar from http://www.image-net.org/ (or from other sources), and put it in dataset_preprocess/ImageNet folder. Then run python preprocess.py. This code will crop and resize the images into 128x128x3 format, and save the images in ILSVRC2012folder. Each subfolder in ILSVRC2012 folder corresponds to one class. Each npy file in the subfolders corresponds to an image.

Training BSN and SN variants

Prerequisites

The codes are based on GPUTaskScheduler library, which helps you automatically schedule the jobs among GPU nodes. Please install it first. You may need to change GPU configurations according to the devices you have. The configurations are set in config.py in each directory. Please refer to GPUTaskScheduler's GitHub page for the details of how to make proper configurations.

You can also run these codes without GPUTaskScheduler. Just run python gan.py in gan subfolders.

CIFAR10, STL10, CelebA

Preparation

Copy the preprocessed datasets from the previous steps into the following paths:

  • CIFAR10: /data/CIFAR10/cifar-10-python.tar.gz.
  • STL10: /data/STL10/cifar-10-stl10.npy.
  • CelebA: /data/CelebA/celeba.npy.

Here means

  • Vanilla SN and our proposed BSSN/SSN/BSN without gammas: no_gamma-CNN.
  • SN with the same gammas: same_gamma-CNN.
  • SN with different gammas: diff_gamma-CNN.

Alternatively, you can directly modify the dataset paths in /gan_task.py to the path of the preprocessed dataset folders.

Running codes

Now you can directly run python main.py in each to train the models.

All the configurable hyper-parameters can be set in config.py. The hyper-parameters in the file are already set for reproducing the results in the paper. Please refer to GPUTaskScheduler's GitHub page for the details of the grammar of this file.

ImageNet

Preparation

Copy the preprocessed folder ILSVRC2012 from the previous steps to /data/imagenet/ILSVRC2012, where means

  • Vanilla SN and our proposed BSSN/SSN/BSN without gammas: no_gamma-ResNet.

Alternatively, you can directly modify the dataset path in /gan_task.py to the path of the preprocessed folder ILSVRC2012.

Running codes

Now you can directly run python main.py in each to train the models.

All the configurable hyper-parameters can be set in config.py. The hyper-parameters in the file are already set for reproducing the results in the paper. Please refer to GPUTaskScheduler's GitHub page for the details of the grammar of this file.

The code supports multi-GPU training for speed-up, by separating each data batch equally among multiple GPUs. To do that, you only need to make minor modifications in config.py. For example, if you have two GPUs with IDs 0 and 1, then all you need to do is to (1) change "gpu": ["0"] to "gpu": [["0", "1"]], and (2) change "num_gpus": [1] to "num_gpus": [2]. Note that the number of GPUs might influence the results because in this implementation the batch normalization layers on different GPUs are independent. In our experiments, we were using only one GPU.

Results

The code generates the following result files/folders:

  • /results/ /worker.log : Standard output and error from the code.
  • /results/ /metrics.csv : Inception Score and FID during training.
  • /results/ /sample/*.png : Generated images during training.
  • /results/ /checkpoint/* : TensorFlow checkpoints.
  • /results/ /time.txt : Training iteration timestamps.
Owner
Zinan Lin
Ph.D. student at Electrical and Computer Engineering, Carnegie Mellon University
Zinan Lin
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022