Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Overview

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements

[paper (NeurIPS 2021)] [paper (arXiv)] [code]

Authors: Zinan Lin, Vyas Sekar, Giulia Fanti

Abstract: Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs). However, there is currently limited understanding of why SN is effective. In this work, we show that SN controls two important failure modes of GAN training: exploding and vanishing gradients. Our proofs illustrate a (perhaps unintentional) connection with the successful LeCun initialization. This connection helps to explain why the most popular implementation of SN for GANs requires no hyper-parameter tuning, whereas stricter implementations of SN have poor empirical performance out-of-the-box. Unlike LeCun initialization which only controls gradient vanishing at the beginning of training, SN preserves this property throughout training. Building on this theoretical understanding, we propose a new spectral normalization technique: Bidirectional Scaled Spectral Normalization (BSSN), which incorporates insights from later improvements to LeCun initialization: Xavier initialization and Kaiming initialization. Theoretically, we show that BSSN gives better gradient control than SN. Empirically, we demonstrate that it outperforms SN in sample quality and training stability on several benchmark datasets.


This repo contains the codes for reproducing the experiments of our BSN and different SN variants in the paper. The codes were tested under Python 2.7.5, TensorFlow 1.14.0.

Preparing datasets

CIFAR10

Download cifar-10-python.tar.gz from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz (or from other sources).

STL10

Download stl10_binary.tar.gz from http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz (or from other sources), and put it in dataset_preprocess/STL10 folder. Then run python preprocess.py. This code will resize the images into 48x48x3 format, and save the images in stl10.npy.

CelebA

Download img_align_celeba.zip from https://www.kaggle.com/jessicali9530/celeba-dataset (or from other sources), and put it in dataset_preprocess/CelebA folder. Then run python preprocess.py. This code will crop and resize the images into 64x64x3 format, and save the images in celeba.npy.

ImageNet

Download ILSVRC2012_img_train.tar from http://www.image-net.org/ (or from other sources), and put it in dataset_preprocess/ImageNet folder. Then run python preprocess.py. This code will crop and resize the images into 128x128x3 format, and save the images in ILSVRC2012folder. Each subfolder in ILSVRC2012 folder corresponds to one class. Each npy file in the subfolders corresponds to an image.

Training BSN and SN variants

Prerequisites

The codes are based on GPUTaskScheduler library, which helps you automatically schedule the jobs among GPU nodes. Please install it first. You may need to change GPU configurations according to the devices you have. The configurations are set in config.py in each directory. Please refer to GPUTaskScheduler's GitHub page for the details of how to make proper configurations.

You can also run these codes without GPUTaskScheduler. Just run python gan.py in gan subfolders.

CIFAR10, STL10, CelebA

Preparation

Copy the preprocessed datasets from the previous steps into the following paths:

  • CIFAR10: /data/CIFAR10/cifar-10-python.tar.gz.
  • STL10: /data/STL10/cifar-10-stl10.npy.
  • CelebA: /data/CelebA/celeba.npy.

Here means

  • Vanilla SN and our proposed BSSN/SSN/BSN without gammas: no_gamma-CNN.
  • SN with the same gammas: same_gamma-CNN.
  • SN with different gammas: diff_gamma-CNN.

Alternatively, you can directly modify the dataset paths in /gan_task.py to the path of the preprocessed dataset folders.

Running codes

Now you can directly run python main.py in each to train the models.

All the configurable hyper-parameters can be set in config.py. The hyper-parameters in the file are already set for reproducing the results in the paper. Please refer to GPUTaskScheduler's GitHub page for the details of the grammar of this file.

ImageNet

Preparation

Copy the preprocessed folder ILSVRC2012 from the previous steps to /data/imagenet/ILSVRC2012, where means

  • Vanilla SN and our proposed BSSN/SSN/BSN without gammas: no_gamma-ResNet.

Alternatively, you can directly modify the dataset path in /gan_task.py to the path of the preprocessed folder ILSVRC2012.

Running codes

Now you can directly run python main.py in each to train the models.

All the configurable hyper-parameters can be set in config.py. The hyper-parameters in the file are already set for reproducing the results in the paper. Please refer to GPUTaskScheduler's GitHub page for the details of the grammar of this file.

The code supports multi-GPU training for speed-up, by separating each data batch equally among multiple GPUs. To do that, you only need to make minor modifications in config.py. For example, if you have two GPUs with IDs 0 and 1, then all you need to do is to (1) change "gpu": ["0"] to "gpu": [["0", "1"]], and (2) change "num_gpus": [1] to "num_gpus": [2]. Note that the number of GPUs might influence the results because in this implementation the batch normalization layers on different GPUs are independent. In our experiments, we were using only one GPU.

Results

The code generates the following result files/folders:

  • /results/ /worker.log : Standard output and error from the code.
  • /results/ /metrics.csv : Inception Score and FID during training.
  • /results/ /sample/*.png : Generated images during training.
  • /results/ /checkpoint/* : TensorFlow checkpoints.
  • /results/ /time.txt : Training iteration timestamps.
Owner
Zinan Lin
Ph.D. student at Electrical and Computer Engineering, Carnegie Mellon University
Zinan Lin
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022