Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

Overview

MINER_pl

Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning.

image

📖 Ref readings

⚠️ Main differences w.r.t. the original paper before continue:

  • In the pseudo code on page 8, where the author states Weight sharing for images, it means finer level networks are initialized with coarser level network weights. However, I did not find the correct way to implement this. Therefore, I initialize the network weights from scratch for all levels.
  • The paper says it uses sinusoidal activation (does he mean SIREN? I don't know), but I use gaussian activation (in hidden layers) with trainable parameters (per block) like my experiments in the other repo. In finer levels where the model predicts laplacian pyramids, I use sinusoidal activation x |-> sin(ax) with trainable parameters a (per block) as output layer (btw, this performs significantly better than simple tanh). Moreover, I precompute the maximum amplitude for laplacian residuals, and use it to scale the output, and I find it to be better than without scaling.
  • I experimented with a common trick in coordinate mlp: positional encoding and find that using it can increase training time/accuracy with the same number of parameters (by reducing 1 layer). This can be turned on/off by specifying the argument --use_pe. The optimal number of frequencies depends on the patch size, the larger patch sizes, the more number of frequencies you need and vice versa.
  • Some difference in the hyperparameters: the default learning rate is 3e-2 instead of 5e-4. Optimizer is RAdam instead of Adam. Block pruning happens when the loss is lower than 1e-4 (i.e. when PSNR>=40) for image and 5e-3 for occupancy rather than 2e-7.

💻 Installation

  • Run pip install -r requirements.txt.
  • Download the images from Acknowledgement or prepare your own images into a folder called images.
  • Download the meshes from Acknowledgement or prepare your own meshes into a folder called meshes.

🔑 Training

image

Pluto example:

python train.py \
    --task image --path images/pluto.png \
    --input_size 4096 4096 --patch_size 32 32 --batch_size 256 --n_scales 4 \
    --use_pe --n_layers 3 \
    --num_epochs 50 50 50 200 \
    --exp_name pluto4k_4scale

Tokyo station example:

python train.py \
    --task image --path images/tokyo-station.jpg \
    --input_size 6000 4000 --patch_size 25 25 --batch_size 192 --n_scales 5 \
    --use_pe --n_layers 3 \
    --num_epochs 50 50 50 50 150 \
    --exp_name tokyo6k_5scale
Image (size) Train time (s) GPU mem (MiB) #Params (M) PSNR
Pluto (4096x4096) 53 3171 9.16 42.14
Pluto (8192x8192) 106 6099 28.05 45.09
Tokyo station (6000x4000) 68 6819 35.4 42.48
Shibuya (7168x2560) 101 8967 17.73 37.78
Shibuya (14336x5120) 372 8847 75.42 39.32
Shibuya (28672x10240) 890 10255 277.37 41.93
Shibuya (28672x10240)* 1244 6277 98.7 37.59

*paper settings (6 scales, each network has 4 layer with 9 hidden units)

The original image will be resized to img_wh for reconstruction. You need to make sure img_wh divided by 2^(n_scales-1) (the resolution at the coarsest level) is still a multiple of patch_wh.


mesh

First, convert the mesh to N^3 occupancy grid by

python preprocess_mesh.py --N 512 --M 1 --T 1 --path <path/to/mesh> 

This will create N^3 occupancy to be regressed by the neural network. For detailed options, please see preprocess_mesh.py. Typically, increase M or T if you find the resulting occupancy bad.

Next, start training (bunny example):

python train.py \
    --task mesh --path occupancy/bunny_512.npy \
    --input_size 512 --patch_size 16 --batch_size 512 --n_scales 4 \
    --use_pe --n_freq 5 --n_layers 2 --n_hidden 8 \
    --loss_thr 5e-3 --b_chunks 512 \
    --num_epochs 50 50 50 150 \
    --exp_name bunny512_4scale

For full options, please see here. Some important options:

  • If your GPU memory is not enough, try reducing batch_size.
  • By default it will not log intermediate images to tensorboard to save time. To visualize image reconstruction and active blocks, add --log_image argument.

You are recommended to monitor the training progress by

tensorboard --logdir logs

where you can see training curves and images.

🟥 🟩 🟦 Block decomposition

To reconstruct the image using trained model and to visualize block decomposition per scale like Fig. 4 in the paper, see image_test.ipynb or mesh_test.ipynb

Examples:

💡 Implementation tricks

  • Setting num_workers=0 in dataloader increased the speed a lot.
  • As suggested in training details on page 4, I implement parallel block inference by defining parameters of shape (n_blocks, n_in, n_out) and use @ operator (same as torch.bmm) for faster inference.
  • To perform block pruning efficiently, I create two copies of the same network, and continually train and prune one of them while copying the trained parameters to the target network (somehow like in reinforcement learning, e.g. DDPG). This allows the network as well as the optimizer to shrink, therefore achieve higher memory and speed performance.
  • In validation, I perform inference in chunks like NeRF, and pass each chunk to cpu to reduce GPU memory usage.

💝 Acknowledgement

Further readings

During a stream, my audience suggested me to test on this image with random pixels:

random

The default 32x32 patch size doesn't work well, since the texture varies too quickly inside a patch. Decreasing to 16x16 and increasing network hidden units make the network converge right away to 43.91 dB under a minute. Surprisingly, with the other image reconstruction SOTA instant-ngp, the network is stuck at 17 dB no matter how long I train.

ngp-random

Is this a possible weakness of instant-ngp? What effect could it bring to real application? You are welcome to test other methods to reconstruct this image!

Owner
AI葵
AI R&D in computer vision. Doing VTuber about DL algorithms. Check my channel! If you find my works helpful, please consider sponsoring! 我有在做VTuber,歡迎訂閱我的頻道!
AI葵
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022