EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

Overview

EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

Paper on arXiv

EquiBind, is a SE(3)-equivariant geometric deep learning model performing direct-shot prediction of both i) the receptor binding location (blind docking) and ii) the ligand’s bound pose and orientation. EquiBind achieves significant speed-ups and better quality compared to traditional and recent baselines. If you have questions, don't hesitate to open an issue or ask me via [email protected] or social media or Octavian Ganea via [email protected]. We are happy to hear from you!

Dataset

Our preprocessed data (see dataset section in the paper Appendix) is available from zenodo.
The files in data contain the names for the time-based data split.

If you want to train one of our models with the data then:

  1. download it from zenodo
  2. unzip the directory and place it into data such that you have the path data/PDBBind

Use provided model weights to predict binding structure of your own protein-ligand pairs:

Step 1: What you need as input

Ligand files of the formats .mol2 or .sdf or .pdbqt or .pdb.
Receptor files of the format .pdb
For each complex you want to predict you need a directory containing the ligand and receptor file. Like this:

my_data_folder
└───name1
    │   name1_protein.pdb
    │   name1_ligand.sdf
└───name2
    │   name2_protein.pdb
    │   name2_ligand.sdf
...

Step 2: Setup Environment

We will set up the environment using Anaconda. Clone the current repo

git clone https://github.com/HannesStark/EquiBind

Create a new environment with all required packages using environment.yml (this can take a while). While in the project directory run:

conda env create

Activate the environment

conda activate equibind

Here are the requirements themselves if you want to install them manually instead of using the environment.yml:

python=3.7
pytorch 1.10
torchvision
cudatoolkit=10.2
torchaudio
dgl-cuda10.2
rdkit
openbabel
biopython
rdkit
biopandas
pot
dgllife
joblib
pyaml
icecream
matplotlib
tensorboard

Step 3: Predict Binding Structures!

In the config file configs_clean/inference.yml set the path to your input data folder inference_path: path_to/my_data_folder.
Then run:

python inference.py --config=configs_clean/inference.yml

Done! 🎉
Your results are saved as .sdf files in the directory specified in the config file under output_directory: 'data/results/output' and as tensors at runs/flexible_self_docking/predictions_RDKitFalse.pt!

Reproducing paper numbers

Download the data and place it as described in the "Dataset" section above.

Using the provided model weights

To predict binding structures using the provided model weights run:

python inference.py --config=configs_clean/inference_file_for_reproduce.yml

This will give you the results of EquiBind-U and then those of EquiBind after running the fast ligand point cloud fitting corrections.
The numbers are a bit better than what is reported in the paper. We will put the improved numbers into the next update of the paper.

Training a model yourself and using those weights

To train the model yourself, run:

python train.py --config=configs_clean/RDKitCoords_flexible_self_docking.yml

The model weights are saved in the runs directory.
You can also start a tensorboard server tensorboard --logdir=runs and watch the model train.
To evaluate the model on the test set, change the run_dirs: entry of the config file inference_file_for_reproduce.yml to point to the directory produced in runs. Then you can runpython inference.py --config=configs_clean/inference_file_for_reproduce.yml as above!

Reference

📃 Paper on arXiv

@misc{stark2022equibind,
      title={EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction}, 
      author={Hannes Stärk and Octavian-Eugen Ganea and Lagnajit Pattanaik and Regina Barzilay and Tommi Jaakkola},
      year={2022}
}
Owner
Hannes Stärk
MIT Research Intern • Geometric DL + Graphs :heart: • M. Sc. Informatics from TU Munich
Hannes Stärk
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022