EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

Overview

EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

Paper on arXiv

EquiBind, is a SE(3)-equivariant geometric deep learning model performing direct-shot prediction of both i) the receptor binding location (blind docking) and ii) the ligand’s bound pose and orientation. EquiBind achieves significant speed-ups and better quality compared to traditional and recent baselines. If you have questions, don't hesitate to open an issue or ask me via [email protected] or social media or Octavian Ganea via [email protected]. We are happy to hear from you!

Dataset

Our preprocessed data (see dataset section in the paper Appendix) is available from zenodo.
The files in data contain the names for the time-based data split.

If you want to train one of our models with the data then:

  1. download it from zenodo
  2. unzip the directory and place it into data such that you have the path data/PDBBind

Use provided model weights to predict binding structure of your own protein-ligand pairs:

Step 1: What you need as input

Ligand files of the formats .mol2 or .sdf or .pdbqt or .pdb.
Receptor files of the format .pdb
For each complex you want to predict you need a directory containing the ligand and receptor file. Like this:

my_data_folder
└───name1
    │   name1_protein.pdb
    │   name1_ligand.sdf
└───name2
    │   name2_protein.pdb
    │   name2_ligand.sdf
...

Step 2: Setup Environment

We will set up the environment using Anaconda. Clone the current repo

git clone https://github.com/HannesStark/EquiBind

Create a new environment with all required packages using environment.yml (this can take a while). While in the project directory run:

conda env create

Activate the environment

conda activate equibind

Here are the requirements themselves if you want to install them manually instead of using the environment.yml:

python=3.7
pytorch 1.10
torchvision
cudatoolkit=10.2
torchaudio
dgl-cuda10.2
rdkit
openbabel
biopython
rdkit
biopandas
pot
dgllife
joblib
pyaml
icecream
matplotlib
tensorboard

Step 3: Predict Binding Structures!

In the config file configs_clean/inference.yml set the path to your input data folder inference_path: path_to/my_data_folder.
Then run:

python inference.py --config=configs_clean/inference.yml

Done! 🎉
Your results are saved as .sdf files in the directory specified in the config file under output_directory: 'data/results/output' and as tensors at runs/flexible_self_docking/predictions_RDKitFalse.pt!

Reproducing paper numbers

Download the data and place it as described in the "Dataset" section above.

Using the provided model weights

To predict binding structures using the provided model weights run:

python inference.py --config=configs_clean/inference_file_for_reproduce.yml

This will give you the results of EquiBind-U and then those of EquiBind after running the fast ligand point cloud fitting corrections.
The numbers are a bit better than what is reported in the paper. We will put the improved numbers into the next update of the paper.

Training a model yourself and using those weights

To train the model yourself, run:

python train.py --config=configs_clean/RDKitCoords_flexible_self_docking.yml

The model weights are saved in the runs directory.
You can also start a tensorboard server tensorboard --logdir=runs and watch the model train.
To evaluate the model on the test set, change the run_dirs: entry of the config file inference_file_for_reproduce.yml to point to the directory produced in runs. Then you can runpython inference.py --config=configs_clean/inference_file_for_reproduce.yml as above!

Reference

📃 Paper on arXiv

@misc{stark2022equibind,
      title={EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction}, 
      author={Hannes Stärk and Octavian-Eugen Ganea and Lagnajit Pattanaik and Regina Barzilay and Tommi Jaakkola},
      year={2022}
}
Owner
Hannes Stärk
MIT Research Intern • Geometric DL + Graphs :heart: • M. Sc. Informatics from TU Munich
Hannes Stärk
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023