A PyTorch Implementation of Single Shot MultiBox Detector

Overview

SSD: Single Shot MultiBox Object Detector, in PyTorch

A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang, and Alexander C. Berg. The official and original Caffe code can be found here.

Table of Contents

       

Installation

  • Install PyTorch by selecting your environment on the website and running the appropriate command.
  • Clone this repository.
    • Note: We currently only support Python 3+.
  • Then download the dataset by following the instructions below.
  • We now support Visdom for real-time loss visualization during training!
    • To use Visdom in the browser:
    # First install Python server and client
    pip install visdom
    # Start the server (probably in a screen or tmux)
    python -m visdom.server
    • Then (during training) navigate to http://localhost:8097/ (see the Train section below for training details).
  • Note: For training, we currently support VOC and COCO, and aim to add ImageNet support soon.

Datasets

To make things easy, we provide bash scripts to handle the dataset downloads and setup for you. We also provide simple dataset loaders that inherit torch.utils.data.Dataset, making them fully compatible with the torchvision.datasets API.

COCO

Microsoft COCO: Common Objects in Context

Download COCO 2014
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/COCO2014.sh

VOC Dataset

PASCAL VOC: Visual Object Classes

Download VOC2007 trainval & test
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2007.sh # <directory>
Download VOC2012 trainval
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2012.sh # <directory>

Training SSD

mkdir weights
cd weights
wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
  • To train SSD using the train script simply specify the parameters listed in train.py as a flag or manually change them.
python train.py
  • Note:
    • For training, an NVIDIA GPU is strongly recommended for speed.
    • For instructions on Visdom usage/installation, see the Installation section.
    • You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see train.py for options)

Evaluation

To evaluate a trained network:

python eval.py

You can specify the parameters listed in the eval.py file by flagging them or manually changing them.

Performance

VOC2007 Test

mAP
Original Converted weiliu89 weights From scratch w/o data aug From scratch w/ data aug
77.2 % 77.26 % 58.12% 77.43 %
FPS

GTX 1060: ~45.45 FPS

Demos

Use a pre-trained SSD network for detection

Download a pre-trained network

SSD results on multiple datasets

Try the demo notebook

  • Make sure you have jupyter notebook installed.
  • Two alternatives for installing jupyter notebook:
    1. If you installed PyTorch with conda (recommended), then you should already have it. (Just navigate to the ssd.pytorch cloned repo and run): jupyter notebook

    2. If using pip:

# make sure pip is upgraded
pip3 install --upgrade pip
# install jupyter notebook
pip install jupyter
# Run this inside ssd.pytorch
jupyter notebook

Try the webcam demo

  • Works on CPU (may have to tweak cv2.waitkey for optimal fps) or on an NVIDIA GPU
  • This demo currently requires opencv2+ w/ python bindings and an onboard webcam
    • You can change the default webcam in demo/live.py
  • Install the imutils package to leverage multi-threading on CPU:
    • pip install imutils
  • Running python -m demo.live opens the webcam and begins detecting!

TODO

We have accumulated the following to-do list, which we hope to complete in the near future

  • Still to come:
    • Support for the MS COCO dataset
    • Support for SSD512 training and testing
    • Support for training on custom datasets

Authors

Note: Unfortunately, this is just a hobby of ours and not a full-time job, so we'll do our best to keep things up to date, but no guarantees. That being said, thanks to everyone for your continued help and feedback as it is really appreciated. We will try to address everything as soon as possible.

References

Owner
Max deGroot
Amazon Alexa | ML Research at Vanderbilt University
Max deGroot
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022