Data labels and scripts for fastMRI.org

Overview

fastMRI+: Clinical pathology annotations for the fastMRI dataset

The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been used widely to train machine learning models for image reconstruction and has been used in reconstruction challenges.

This repo includes clinical pathology annotations for this dataset. The entire knee dataset and approximately 1000 brain datasets have been labeled. The goal of providing these labels is to enable developers of image reconstruction models and algorithms to evaluate the performance of the developed techniques with a focus on the sections or regions that could contain clinical pathology.

Limitations

Each image has labeled by a single radiologist and without the benefit of looking at other views and angles of the same subject, and should therefore be considered in that context. Specifically, the labels should not be considered clinical ground truth or an exhaustive list of all lesions but rather an indicatition of where a pathology could be present.

Obtaining fastMRI raw data and images

The fastMRI raw data and reference images can be obtained from fastmri.org. You will be able to download and use the data for academic purposes after signing the data sharing agreement. If you are looking for automation for downloading the dataset and training fastMRI models, please see the InnerEye Deep Learning Toolkit.

Labeling procedure and generating DICOM images from fastMRI data

In order to label the data, DICOM files were generated from the fastMRI dataset, and we are providing a fastmri_to_dicom.py to document the procedure. This script can be used like this:

python fastmri_to_dicom.py --filename fastmridatafile.h5

Note: In the process of converting the images to DICOM, the pixel arrays were flipped (up/down) to provide a view that was closer to DICOM orientation and assist with labeling. This should be taken into consideration when using the labels.

The labeling was performed by experienced radiologists using MD.ai.

Working with the annotations

The Annotations folder contains a label file for each of the knee (knee.csv and brain (brain.csv datasets. The files contain one line for each annotation (bounding box) that was labeled by the radiologists. Datasets with no findings (no annotations) are not represented in the label files, however, you can see which files were reviewed in the brain_file_list.csv and knee_file_list.csv. If a dataset (a fastMRI file) is listed in the file lists but not in the label files, it means that it has been reviewed, but there were no findings.

The repo contains an example jupyter notebook, which illustrates how to read the labels and overlay them onto the image pixels.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022