Deep Two-View Structure-from-Motion Revisited

Overview

Deep Two-View Structure-from-Motion Revisited

This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

We have provided the functions for training, validating, and visualization.

Note: some config flags are designed for ablation study, and we have a plan to re-org the codes later. Please feel free to submit issues if you feel confused about some parts.

Requirements

Python = 3.6.x
Pytorch >= 1.6.0
CUDA >= 10.1

and the others could be installed by

pip install -r requirements.txt

Pytorch from 1.1.0 to 1.6.0 should also work well, but it will disenable mixed precision training, and we have not tested it.

To use the RANSAC five-point algorithm, you also need to

cd RANSAC_FiveP

python setup.py install --user

The CUDA extension would be installed as 'essential_matrix'. Tested under Ubuntu and CUDA 10.1.

Models

Pretrained models are provided here.

KITTI Depth

To reproduce our results, please first download the KITTI dataset RAW data and 14GB official depth maps. You should also download the split files provided by us, and unzip them into the root of the KITTI raw data. Then, modify the gt_depth_dir (KITTI_loader.py, L278) to the address of KITTI official depth maps.

For training,

python main.py -b 32 --lr 0.0005 --nlabel 128 --fix_flownet \
--data PATH/TO/YOUR/KITTI/DATASET --cfg cfgs/kitti.yml \
--pretrained-depth depth_init.pth.tar --pretrained-flow flow_init.pth.tar

For evaluation,

python main.py -v -b 1 -p 1 --nlabel 128 \
--data PATH/TO/YOUR/KITTI/DATASET --cfg cfgs/kitti.yml \
--pretrained kitti.pth.tar"

The default evaluation split is Eigen, where the metric abs_rel should be around 0.053 and rmse should be close to 2.22. If you would like to use the Eigen SfM split, please set cfg.EIGEN_SFM = True and cfg.KITTI_697 = False.

KITTI Pose

For fair comparison, we use a KITTI odometry evaluation toolbox as provided here. Please generate poses by sequence, and evaluate the results correspondingly.

Acknowledgment:

Thanks Shihao Jiang and Dylan Campbell for sharing the implementation of the GPU-accelerated RANSAC Five-point algorithm. We really appreciate the valuable feedback from our area chairs and reviewers. We would like to thank Charles Loop for helpful discussions and Ke Chen for providing field test images from NVIDIA AV cars.

BibTex:

@article{wang2021deep,
  title={Deep Two-View Structure-from-Motion Revisited},
  author={Wang, Jianyuan and Zhong, Yiran and Dai, Yuchao and Birchfield, Stan and Zhang, Kaihao and Smolyanskiy, Nikolai and Li, Hongdong},
  journal={CVPR},
  year={2021}
}
Owner
Jianyuan Wang
Computer Vision
Jianyuan Wang
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.

Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta

Pratham Mehta 10 Nov 11, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022