Deep Two-View Structure-from-Motion Revisited

Overview

Deep Two-View Structure-from-Motion Revisited

This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

We have provided the functions for training, validating, and visualization.

Note: some config flags are designed for ablation study, and we have a plan to re-org the codes later. Please feel free to submit issues if you feel confused about some parts.

Requirements

Python = 3.6.x
Pytorch >= 1.6.0
CUDA >= 10.1

and the others could be installed by

pip install -r requirements.txt

Pytorch from 1.1.0 to 1.6.0 should also work well, but it will disenable mixed precision training, and we have not tested it.

To use the RANSAC five-point algorithm, you also need to

cd RANSAC_FiveP

python setup.py install --user

The CUDA extension would be installed as 'essential_matrix'. Tested under Ubuntu and CUDA 10.1.

Models

Pretrained models are provided here.

KITTI Depth

To reproduce our results, please first download the KITTI dataset RAW data and 14GB official depth maps. You should also download the split files provided by us, and unzip them into the root of the KITTI raw data. Then, modify the gt_depth_dir (KITTI_loader.py, L278) to the address of KITTI official depth maps.

For training,

python main.py -b 32 --lr 0.0005 --nlabel 128 --fix_flownet \
--data PATH/TO/YOUR/KITTI/DATASET --cfg cfgs/kitti.yml \
--pretrained-depth depth_init.pth.tar --pretrained-flow flow_init.pth.tar

For evaluation,

python main.py -v -b 1 -p 1 --nlabel 128 \
--data PATH/TO/YOUR/KITTI/DATASET --cfg cfgs/kitti.yml \
--pretrained kitti.pth.tar"

The default evaluation split is Eigen, where the metric abs_rel should be around 0.053 and rmse should be close to 2.22. If you would like to use the Eigen SfM split, please set cfg.EIGEN_SFM = True and cfg.KITTI_697 = False.

KITTI Pose

For fair comparison, we use a KITTI odometry evaluation toolbox as provided here. Please generate poses by sequence, and evaluate the results correspondingly.

Acknowledgment:

Thanks Shihao Jiang and Dylan Campbell for sharing the implementation of the GPU-accelerated RANSAC Five-point algorithm. We really appreciate the valuable feedback from our area chairs and reviewers. We would like to thank Charles Loop for helpful discussions and Ke Chen for providing field test images from NVIDIA AV cars.

BibTex:

@article{wang2021deep,
  title={Deep Two-View Structure-from-Motion Revisited},
  author={Wang, Jianyuan and Zhong, Yiran and Dai, Yuchao and Birchfield, Stan and Zhang, Kaihao and Smolyanskiy, Nikolai and Li, Hongdong},
  journal={CVPR},
  year={2021}
}
Owner
Jianyuan Wang
Computer Vision
Jianyuan Wang
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation

This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R

20 Jun 29, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022