AntiFuzz: Impeding Fuzzing Audits of Binary Executables

Related tags

Deep Learningantifuzz
Overview

AntiFuzz: Impeding Fuzzing Audits of Binary Executables

Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf

Usage:

The python script antifuzz_generate.py generates a "antifuzz.h" file that you need to include in your C project (see chapter below). The script takes multiple arguments to define which features you want to activate.

To disable all features, supply:

  --disable-all

To break assumption (A), i.e. to break coverage-guided fuzzing, use:

  --enable-anti-coverage

You can specify how many random BBs and random constrain functions you want to have by supplying "--anti-coverage [num]" (default: 10000).

To break assumption (B), i.e. to prevent fuzzers from detecting crashes, use:

  --signal --crash-action exit

To break assumption (C), i.e. to decrease the performance of the application when being fuzzed, use:

  --enable-sleep --signal

Additionaly, you can supply "--sleep [ms]" to set the length of the sleep in milliseconds (default: 750). You can also replace the crash behavior by supplying "--crash-action timeout" to replace every crash with a timeout.

To break assumption (D), i.e. to boggle down symbolic execution engines, use:

  --hash-cmp --enable-encrypt-decrypt

To enable all features, use:

  --enable-anti-coverage --signal --crash-action exit --enable-sleep --signal --hash-cmp --enable-encrypt-decrypt

Demo

To test it out, we supplied a demo application called antifuzz_test.c that just checks for "crsh" with single byte comparisons, and crashes if that's the case. It configures itself to fit the generated antifuzz header file, i.e. when hash comparisons are demanded via antifuzz_generate.py, antifuzz_test will compare the hashes instead of the plain constants.

First, generate the antifuzz.h file:

python antifuzz_generate.py --enable-anti-coverage --signal --crash-action exit --enable-sleep --signal --hash-cmp --enable-encrypt-decrypt

Next, compile the demo application with afl-gcc after installing AFL 2.52b (note that this may take minutes (!) depending on the number of random BBs added):

afl-gcc antifuzz_test.c -o antifuzz_test 

Run it in AFL to test it out:

mkdir inp; echo 1234 > inp/a.txt; afl-fuzz -i inp/ -o /dev/shm/out -- ./antifuzz_test @@

If you enabled all options, AFL may take a long time to start because the application is slowed down (to break assumption (C))

Protecting Applications

To include it in your own C project, follow these instructions (depending on your use-case and application, you might want to skip some of them):

1.

Add

#include "antifuzz.h"

to the header.

2.

Jump to the line that opens the (main) input file, the one that an attacker might target as an attack vector, and call

antifuzz_init("file_name_here", FLAG_ALL); 

This initializes AntiFuzz, checks if overwriting signals is possible, checks if the application is ptrace'd, puts the input through encryption and decryption, jumps through random BBs, etc.

3.

Find all lines and blocks of code that deal with malformed input files or introduce those yourself. It's often the case that these lines already exist to print some kind of error or warning message (e.g. "this is not a valid ... file"). Add a call to

antifuzz_onerror()

everywhere you deem appropriate.

4.

Find comparisons to constants (e.g. magic bytes) that you think are important for this file format, and change the comparison to hash comparisons. Add your constant to antifuzz_constants.tpl.h like this:

char *antifuzzELF = "ELF";

Our generator script will automatically change these lines to their respective SHA512 hashes when generating the final header file, you do not have to do this manually. Now change the lines from (as an example):

if(strcmp(header, "ELF") == 0)

to

if(antifuzz_str_equal(header, antifuzzELF))

See antifuzz.tpl.h for more comparison functions.

5.

If you have more data that you want to protect from symbolic execution, use:

antifuzz_encrypt_decrypt_buf(char *ptr, size_t fileSize) 
Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023