AntiFuzz: Impeding Fuzzing Audits of Binary Executables

Related tags

Deep Learningantifuzz
Overview

AntiFuzz: Impeding Fuzzing Audits of Binary Executables

Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf

Usage:

The python script antifuzz_generate.py generates a "antifuzz.h" file that you need to include in your C project (see chapter below). The script takes multiple arguments to define which features you want to activate.

To disable all features, supply:

  --disable-all

To break assumption (A), i.e. to break coverage-guided fuzzing, use:

  --enable-anti-coverage

You can specify how many random BBs and random constrain functions you want to have by supplying "--anti-coverage [num]" (default: 10000).

To break assumption (B), i.e. to prevent fuzzers from detecting crashes, use:

  --signal --crash-action exit

To break assumption (C), i.e. to decrease the performance of the application when being fuzzed, use:

  --enable-sleep --signal

Additionaly, you can supply "--sleep [ms]" to set the length of the sleep in milliseconds (default: 750). You can also replace the crash behavior by supplying "--crash-action timeout" to replace every crash with a timeout.

To break assumption (D), i.e. to boggle down symbolic execution engines, use:

  --hash-cmp --enable-encrypt-decrypt

To enable all features, use:

  --enable-anti-coverage --signal --crash-action exit --enable-sleep --signal --hash-cmp --enable-encrypt-decrypt

Demo

To test it out, we supplied a demo application called antifuzz_test.c that just checks for "crsh" with single byte comparisons, and crashes if that's the case. It configures itself to fit the generated antifuzz header file, i.e. when hash comparisons are demanded via antifuzz_generate.py, antifuzz_test will compare the hashes instead of the plain constants.

First, generate the antifuzz.h file:

python antifuzz_generate.py --enable-anti-coverage --signal --crash-action exit --enable-sleep --signal --hash-cmp --enable-encrypt-decrypt

Next, compile the demo application with afl-gcc after installing AFL 2.52b (note that this may take minutes (!) depending on the number of random BBs added):

afl-gcc antifuzz_test.c -o antifuzz_test 

Run it in AFL to test it out:

mkdir inp; echo 1234 > inp/a.txt; afl-fuzz -i inp/ -o /dev/shm/out -- ./antifuzz_test @@

If you enabled all options, AFL may take a long time to start because the application is slowed down (to break assumption (C))

Protecting Applications

To include it in your own C project, follow these instructions (depending on your use-case and application, you might want to skip some of them):

1.

Add

#include "antifuzz.h"

to the header.

2.

Jump to the line that opens the (main) input file, the one that an attacker might target as an attack vector, and call

antifuzz_init("file_name_here", FLAG_ALL); 

This initializes AntiFuzz, checks if overwriting signals is possible, checks if the application is ptrace'd, puts the input through encryption and decryption, jumps through random BBs, etc.

3.

Find all lines and blocks of code that deal with malformed input files or introduce those yourself. It's often the case that these lines already exist to print some kind of error or warning message (e.g. "this is not a valid ... file"). Add a call to

antifuzz_onerror()

everywhere you deem appropriate.

4.

Find comparisons to constants (e.g. magic bytes) that you think are important for this file format, and change the comparison to hash comparisons. Add your constant to antifuzz_constants.tpl.h like this:

char *antifuzzELF = "ELF";

Our generator script will automatically change these lines to their respective SHA512 hashes when generating the final header file, you do not have to do this manually. Now change the lines from (as an example):

if(strcmp(header, "ELF") == 0)

to

if(antifuzz_str_equal(header, antifuzzELF))

See antifuzz.tpl.h for more comparison functions.

5.

If you have more data that you want to protect from symbolic execution, use:

antifuzz_encrypt_decrypt_buf(char *ptr, size_t fileSize) 
Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022