Code for: https://berkeleyautomation.github.io/bags/

Overview

DeformableRavens

Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the project website, which also contains the data we used to train policies. Contents of this README:

Installation

This is how to get the code running on a local machine. First, get conda on the machine if it isn't there already:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Then, create a new Python 3.7 conda environment (e.g., named "py3-defs") and activate it:

conda create -n py3-defs python=3.7
conda activate py3-defs

Then install:

./install_python_ubuntu.sh

Note I: It is tested on Ubuntu 18.04. We have not tried other Ubuntu versions or other operating systems.

Note II: Installing TensorFlow using conda is usually easier than pip because the conda version will ship with the correct CUDA and cuDNN libraries, whereas the pip version is a nightmare regarding version compatibility.

Note III: the code has only been tested with PyBullet 3.0.4. In fact, there are some places which explicitly hard-code this requirement. Using later versions may work but is not recommended.

Environments and Tasks

This repository contains tasks in the ICRA 2021 submission and the predecessor paper on Transporters (presented at CoRL 2020). For the latter paper, there are (roughly) 10 tasks that came pre-shipped; the Transporters paper doesn't test with pushing or insertion-translation, but tests with all others. See Tasks.md for some task-specific documentation

Each task subclasses a Task class and needs to define its own reset(). The Task class defines an oracle policy that's used to get demonstrations (so it is not implemented within each task subclass), and is divided into cases depending on the action, or self.primitive, used.

Similarly, different tasks have different reward functions, but all are integrated into the Task super-class and divided based on the self.metric type: pose or zone.

Code Usage

Experiments start with python main.py, with --disp added for seeing the PyBullet GUI (but not used for large-scale experiments). The general logic for main.py proceeds as follows:

  • Gather expert demonstrations for the task and put it in data/{TASK}, unless there are already a sufficient amount of demonstrations. There are sub-directories for action, color, depth, info, etc., which store the data pickle files with consistent indexing per time step. Caution: this will start "counting" the data from the existing data/ directory. If you want entirely fresh data, delete the relevant file in data/.

  • Given the data, train the designated agent. The logged data is stored in logs/{AGENT}/{TASK}/{DATE}/{train}/ in the form of a tfevent file for TensorBoard. Note: it will do multiple training runs for statistical significance.

For deformables, we actually use a separate load.py script, due to some issues with creating multiple environments.

See Commands.md for commands to reproduce experimental results.

Downloading the Data

We normally generate 1000 demos for each of the tasks. However, this can take a long time, especially for the bag tasks. We have pre-generated datasets for all the tasks we tested with on the project website. Here's how to do this. For example, suppose we want to download demonstration data for the "bag-color-goal" task. Download the demonstration data from the website. Since this is also a goal-conditioned task, download the goal demonstrations as well. Make new data/ and goals/ directories and put the tar.gz files in the respective directories:

deformable-ravens/
    data/
        bag-color-goal_1000_demos_480Hz_filtered_Nov13.tar.gz
    goals/
        bag-color-goal_20_goals_480Hz_Nov19.tar.gz

Note: if you generate data using the main.py script, then it will automatically create the data/ scripts, and similarly for the generate_goals.py script. You only need to manually create data/ and goals/ if you only want to download and get pre-existing datasets in the right spot.

Then untar both of them in their respective directories:

tar -zxvf bag-color-goal_1000_demos_480Hz_filtered_Nov13.tar.gz
tar -zxvf bag-color-goal_20_goals_480Hz_Nov19.tar.gz

Now the data should be ready! If you want to inspect and debug the data, for example the goals data, then do:

python ravens/dataset.py --path goals/bag-color-goal/

Note that by default it saves any content in goals/ to goals_out/ and data in data/ to data_out/. Also, by default, it will download and save images. This can be very computationally intensive if you do this for the full 1000 demos. (The goals/ data only has 20 demos.) You can change this easily in the main method of ravens/datasets.py.

Running the script will print out some interesting data statistics for you.

Miscellaneous

If you have questions, please use the public issue tracker, so that all of us can benefit from your questions.

If you find this code or research paper helpful, please consider citing it:

@inproceedings{seita_bags_2021,
    author  = {Daniel Seita and Pete Florence and Jonathan Tompson and Erwin Coumans and Vikas Sindhwani and Ken Goldberg and Andy Zeng},
    title   = {{Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks}},
    journal = {arXiv preprint arXiv:2012.03385},
    Year    = {2020}
}
Owner
Daniel Seita
Computer science Ph.D. student at UC Berkeley working in Artificial Intelligence.
Daniel Seita
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021