Code for Learning to Segment The Tail (LST)

Related tags

Deep LearningLST_LVIS
Overview

Learning to Segment the Tail

[arXiv]


In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from the project maskrcnn_benchmark, which is an excellent codebase! If you get any problem that causes you unable to run the project, you can check the issues under maskrcnn_benchmark first.

Installation

Please following INSTALL.md for maskrcnn_benchmark. For experiments on LVIS_v0.5 dataset, you need to use lvis-api.

LVIS Dataset

After downloading LVIS_v0.5 dataset (the images are the same as COCO 2017 version), we recommend to symlink the path to the lvis dataset to datasets/ as follows

# symlink the lvis dataset
cd ~/github/LST_LVIS
mkdir -p datasets/lvis
ln -s /path_to_lvis_dataset/annotations datasets/lvis/annotations
ln -s /path_to_coco_dataset/images datasets/lvis/images

A detailed visualization demo for LVIS is LVIS_visualization. You'll find it is the most useful thing you can get from this repo :P

Dataset Pre-processing and Indices Generation

dataset_preprocess.ipynb: LVIS dataset is split into the base set and sets for the incremental phases.

balanced_replay.ipynb: We generate indices to load the LVIS dataset offline using the balanced replay scheme discussed in our paper.

Training

Our pre-trained model is model. You can trim the model and load it for LVIS training as in trim_model. Modifications to the backbone follows MaskX R-CNN. You can also check our paper for detail.

training for base

The base training is the same as conventional training. For example, to train a model with 8 GPUs you can run:

python -m torch.distributed.launch --nproc_per_node=8 /path_to_maskrcnn_benchmark/tools/train_net.py --use-tensorboard --config-file "/path/to/config/train_file.yaml"  MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 1000

The details about MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN is discussed in maskrcnn-benchmark.

Edit this line to initialze the dataloader with corresponding sorted category ids.

training for incremental steps

The training for each incremental phase is armed with our data balanced replay. It needs to be initialized properly here, providing the corresponding external img-id/cls-id pairs for data-loading.

get distillation

We use ground truth bounding boxes to get prediction logits using the model trained from last step. Change this to decide which classes to be distilled.

Here is an example for running:

python ./tools/train_net.py --use-tensorboard --config-file "/path/to/config/get_distillation_file.yaml" MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 1000

The output distillation logits are saved in json format.

Evaluation

The evaluation for LVIS is a little bit different from COCO since it is not exhausted annotated, which is discussed in detail in Gupta et al.'s work.

We also report the AP for each phase and each class, which can provide better analysis.

You can run:

export NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS /path_to_maskrcnn_benchmark/tools/test_net.py --config-file "/path/to/config/train_file.yaml" 

We also provide periodically testing to check the result better, as discussed in this issue.

Thanks for all the previous work and the sharing of their codes. Sorry for my ugly code and I appreciate your advice.

A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022