Code for Learning to Segment The Tail (LST)

Related tags

Deep LearningLST_LVIS
Overview

Learning to Segment the Tail

[arXiv]


In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from the project maskrcnn_benchmark, which is an excellent codebase! If you get any problem that causes you unable to run the project, you can check the issues under maskrcnn_benchmark first.

Installation

Please following INSTALL.md for maskrcnn_benchmark. For experiments on LVIS_v0.5 dataset, you need to use lvis-api.

LVIS Dataset

After downloading LVIS_v0.5 dataset (the images are the same as COCO 2017 version), we recommend to symlink the path to the lvis dataset to datasets/ as follows

# symlink the lvis dataset
cd ~/github/LST_LVIS
mkdir -p datasets/lvis
ln -s /path_to_lvis_dataset/annotations datasets/lvis/annotations
ln -s /path_to_coco_dataset/images datasets/lvis/images

A detailed visualization demo for LVIS is LVIS_visualization. You'll find it is the most useful thing you can get from this repo :P

Dataset Pre-processing and Indices Generation

dataset_preprocess.ipynb: LVIS dataset is split into the base set and sets for the incremental phases.

balanced_replay.ipynb: We generate indices to load the LVIS dataset offline using the balanced replay scheme discussed in our paper.

Training

Our pre-trained model is model. You can trim the model and load it for LVIS training as in trim_model. Modifications to the backbone follows MaskX R-CNN. You can also check our paper for detail.

training for base

The base training is the same as conventional training. For example, to train a model with 8 GPUs you can run:

python -m torch.distributed.launch --nproc_per_node=8 /path_to_maskrcnn_benchmark/tools/train_net.py --use-tensorboard --config-file "/path/to/config/train_file.yaml"  MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 1000

The details about MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN is discussed in maskrcnn-benchmark.

Edit this line to initialze the dataloader with corresponding sorted category ids.

training for incremental steps

The training for each incremental phase is armed with our data balanced replay. It needs to be initialized properly here, providing the corresponding external img-id/cls-id pairs for data-loading.

get distillation

We use ground truth bounding boxes to get prediction logits using the model trained from last step. Change this to decide which classes to be distilled.

Here is an example for running:

python ./tools/train_net.py --use-tensorboard --config-file "/path/to/config/get_distillation_file.yaml" MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 1000

The output distillation logits are saved in json format.

Evaluation

The evaluation for LVIS is a little bit different from COCO since it is not exhausted annotated, which is discussed in detail in Gupta et al.'s work.

We also report the AP for each phase and each class, which can provide better analysis.

You can run:

export NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS /path_to_maskrcnn_benchmark/tools/test_net.py --config-file "/path/to/config/train_file.yaml" 

We also provide periodically testing to check the result better, as discussed in this issue.

Thanks for all the previous work and the sharing of their codes. Sorry for my ugly code and I appreciate your advice.

An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022