Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Overview

pipeline status codecov codestyle

Pearl

The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid prototyping of new adaptive decision making algorithms in the intersection between reinforcement learning (RL) and evolutionary computation (EC). As such, this is not intended to provide template pre-built algorithms as a baseline, but rather flexible tools to allow the user to quickly build and test their own implementations and ideas. A technical report can be found here.

Main Features

Features Pearl
RL algorithms (e.g. Actor Critic) ✔️
EC algorithms (e.g. Genetic Algorithm) ✔️
Hybrid algorithms (e.g. CEM-DDPG) ✔️
Multi-agent suppport ✔️
Tensorboard integration ✔️
Modular and extensible components ✔️
Opinionated module settings ✔️
Custom callbacks ✔️

User Guide

Installation

There are two options to install this package:

  1. pip install pearll
  2. git clone [email protected]:LondonNode/Pearl.git

Module Guide

  • agents: implementations of RL and EC agents where the other modular components are put together
  • buffers: these handle storing and sampling of trajectories
  • callbacks: inject logic for every step made in an environment (e.g. save model, early stopping)
  • common: common methods applicable to all other modules (e.g. enumerations) and a main utils.py file with some useful general logic
  • explorers: action explorers for enhanced exploration by adding noise to actions and random exploration for first n steps
  • models: neural network structures which are structured as encoder -> torso -> head
  • signal_processing: signal processing logic for extra modularity (e.g. TD returns, GAE)
  • updaters: update neural networks and adaptive/iterative algorithms
  • settings.py: settings objects for the above components, can be extended for custom components

Agent Templates

See pearll/agents/templates.py for the templates to create your own agents! For more examples, see specific agent implementations under pearll/agents.

Agent Performance

To see training performance, use the command tensorboard --logdir runs or tensorboard --logdir <tensorboard_log_path> defined in your algorithm class initialization.

Python Scripts

To run these you'll need to go to wherever the library is installed, cd pearll.

  • demo.py: script to run very basic demos of agents with pre-defined hyperparameters, run python3 -m pearll.demo -h for more info
  • plot.py: script to plot more complex plots that can't be obtained via Tensorboard (e.g. multiple subplots), run python3 -m pearll.plot -h for more info

Developer Guide

Scripts

Linux

  1. scripts/setup_dev.sh: setup your virtual environment
  2. scripts/run_tests.sh: run tests

Windows

  1. scripts/windows_setup_dev.bat: setup your virtual environment
  2. scripts/windows_run_tests.bat: run tests

Dependency Management

Pearl uses poetry for dependency management and build release instead of pip. As a quick guide:

  1. Run poetry add [package] to add more package dependencies.
  2. Poetry automatically handles the virtual environment used, check pyproject.toml for specifics on the virtual environment setup.
  3. If you want to run something in the poetry virtual environment, add poetry run as a prefix to the command you want to execute. For example, to run a python file: poetry run python3 script.py.

Credit

Citing Pearl

@misc{tangri2022pearl,
      title={Pearl: Parallel Evolutionary and Reinforcement Learning Library}, 
      author={Rohan Tangri and Danilo P. Mandic and Anthony G. Constantinides},
      year={2022},
      eprint={2201.09568},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgements

Pearl was inspired by Stable Baselines 3 and Tonic

You might also like...
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

Systemic Evolutionary Chemical Space Exploration for Drug Discovery
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

Deep learning with dynamic computation graphs in TensorFlow
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

PyTorch implementations of deep reinforcement learning algorithms and environments
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

Comments
  • Bump pillow from 9.0.0 to 9.0.1

    Bump pillow from 9.0.0 to 9.0.1

    Bumps pillow from 9.0.0 to 9.0.1.

    Release notes

    Sourced from pillow's releases.

    9.0.1

    https://pillow.readthedocs.io/en/stable/releasenotes/9.0.1.html

    Changes

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [@​radarhere, @​hugovk]
    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]
    Changelog

    Sourced from pillow's changelog.

    9.0.1 (2022-02-03)

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [radarhere, hugovk]

    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]

    Commits
    • 6deac9e 9.0.1 version bump
    • c04d812 Update CHANGES.rst [ci skip]
    • 4fabec3 Added release notes for 9.0.1
    • 02affaa Added delay after opening image with xdg-open
    • ca0b585 Updated formatting
    • 427221e In show_file, use os.remove to remove temporary images
    • c930be0 Restrict builtins within lambdas for ImageMath.eval
    • 75b69dd Dont need to pin for GHA
    • cd938a7 Autolink CWE numbers with sphinx-issues
    • 2e9c461 Add CVE IDs
    • See full diff in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Feature/hybrid

    Feature/hybrid

    Overhaul models and base agent structure to accommodate RL, MARL, EC in optimizing static functions and RL environments and hybrid algorithms combining RL and EC.

    opened by 09tangriro 1
  • MORE AGENTS

    MORE AGENTS

    The more agents created the better proof that the tools underlying work as intended.

    Agents should be tested on particular environments to ensure performance.

    feature good first issue 
    opened by 09tangriro 0
Releases(v0.4.1)
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022