Rendering Point Clouds with Compute Shaders

Overview

Compute Shader Based Point Cloud Rendering

This repository contains the source code to our techreport:
Rendering Point Clouds with Compute Shaders and Vertex Order Optimization
Markus Schütz, Bernhard Kerbl, Michael Wimmer. (not peer-reviewed, currently in submission)

  • Compute shaders can render point clouds up to an order of magnitude faster than GL_POINTS.
  • With a combination of warp-wide deduplication and early-z, compute shaders able to render 796 million points (12.7GB) at stable 62 to 64 frames per second in various different viewpoints on an RTX 3090. This corresponds to a memory bandwidth utilization of about 802GB/s, or a throughput of about 50 billion points per second.
  • The vertex order also strongly affects the performance. Some locality of points that are consecutive in memory is beneficial, but excessive locality can result in drastic slowdowns if it leads to thousands of GPU threads attempting to update a single pixel. As such, neither Morton ordered nor shuffled buffers are optimal. However combining both by first sorting by Morton code, and then shuffling batches of 128 points but leaving points within a batch in order, results in an improved ordering that ensures high performance with our compute approaches, and it also increases the performance of GL_POINTS by up to 5 times.

About the Framework

This framework is written in C++ and JavaScript (using V8). Most of the rendering is done in JavaScript with bindings to OpenGL 4.5 functions. It is written with live-coding in mind, so many javascript files are immediately executed at runtime as soon as they are saved by any text editor. As such, code has to be written with repeated execution in mind.

Getting Started

  • Compile Skye.sln project with Visual Studio.
  • Open the workspace in vscode.
  • Open "load_pointcloud.js" (quick search files via ctrl + e).
    • Adapt the path to the correct location of the las file.
    • Adapt position and lookAt to a viewpoint that fits your point cloud.
    • Change window.x to something that fits your monitor setup, e.g., 0 if you've got a single monitor, or 2540 if you've got two monitors and your first one has a with of 2540 pixels.
  • Press "Ctrl + Shift + B" to start the app. You should be seing an empty green window. (window.x is not yet applied)
  • Once you save "load_pointcloud.js" via ctrl+s, it will be executed, the window will be repositioned, and the point cloud will be loaded.
  • You can change position and lookAt at runtime and apply them by simply saving load_pointcloud.js again. The pointcloud will not be loaded again - to do so, you'll need to restart first.

After loading the point cloud, you should be seeing something like the screenshot below. The framework includes an IMGUI window with frame times, and another window that lets you switch between various rendering methods. Best try with data sets with tens of millions or hundreds of millions of points!

sd

Code Sections

Code for the individual rendering methods is primarily found in the modules/compute_<methods> folders.

Method Location
atomicMin ./modules/compute
reduce ./modules/compute_ballot
early-z ./modules/compute_earlyDepth
reduce & early-z ./modules/compute_ballot_earlyDepth
dedup ./modules/compute_ballot_earlyDepth_dedup
HQS ./modules/compute_hqs
HQS1R ./modules/compute_hqs_1x64bit_fast
busy-loop ./modules/compute_guenther
just-set ./modules/compute_just_set

Results

Frame times when rendering 796 million points on an RTX 3090 in a close-up viewpoint. Times in milliseconds, lower is better. The compute methods reduce (with early-z) and dedup (with early-z) yield the best results with Morton order (<16.6ms, >60fps). The shuffled Morton order greatly improves performance of GL_POINTS and some compute methods, and it is usually either the fastest or within close margins of the fastest combinations of rendering method and ordering.

Not depicted is that the dedup method is the most stable approach that continuously maintains >60fps in all viewpoints, while the performance of the reduce method varies and may drop to 50fps in some viewpoints. As such, we would recomend to use dedup in conjunction with Morton order if the necessary compute features are available, and reduce (with early-z) for wider support.

Comments
  • Can provide some dataset to test the demo (like default Candi Banyunibo data set)?

    Can provide some dataset to test the demo (like default Candi Banyunibo data set)?

    Hi, just found this paper & project via graphics weekly news.. just compiled the demo, and seems uses that dataset by default (banyunibo_inside_morton).. anyway to obtain that dataset? if not can you provide some download link to some huge & equivalent data set used by the demo like retz,eclepens,etc.. are this datasets under non "open" licenses? just wanted to test performance on my Titan V compared to a 3090.. thanks..

    opened by oscarbg 11
  • invisible window

    invisible window

    If I compile in DEBUG (VS2019) it crashes in void V8Helper::setupGL in this line: setupV8GLExtBindings(tpl);

    If I compile in RELEASE it compiles and the console shows no error but the windows is invisible, I can only see the console (and if I click keys I see them in the log).

    I have a 1070

    opened by jagenjo 3
  • A question of render.cs

    A question of render.cs

    image in render.cs there's vec2 variable called imgPos, i don't know why it times 0.5 and plus 0.5, what does it mean? Thank you very much if you can answer my questions. : )

    opened by UMR19 2
  • Questions about point cloud display when zoom in

    Questions about point cloud display when zoom in

    Hi, Thanks for your excellent job, just i compiled the demo and modified the setting to load my point cloud, it loaded successfully and have a better performance. but when i roll the mouse wheel to zoom in to look at the detail, lots of point missed, but when i use potree to display my point cloud, it display perfect. I am a beginner in computer graphics,may be it's point size is too small? image In the potree image

    Thanks for you reply:)

    opened by UMR19 0
  • ssRG and ssBA not bound to resolve?

    ssRG and ssBA not bound to resolve?

    In https://github.com/m-schuetz/compute_rasterizer/blob/master/compute_hqs/render.js

    Both buffers are bound in the render attribute pass, but neither is explicitly bound in the resolve pass. Always assumed that bindBufferBase affects the currently bound shader, but apparently the binding caries over to the next shader? Just a reminder to look this up to clarify my understanding of how they work.

    gl.bindBufferBase(gl.SHADER_STORAGE_BUFFER, 3, ssRG);
    gl.bindBufferBase(gl.SHADER_STORAGE_BUFFER, 4, ssBA);
    
    opened by m-schuetz 0
Releases(build_laz_crf)
Owner
Markus Schütz
Markus Schütz
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
LBK 20 Dec 02, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022