Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Overview

Regression Transformer

License: MIT

Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Summary.

Development setup

conda env create -f conda.yml
conda activate terminator
pip install -e .

Generate some data

Example data for QED can be generated using scripts/generate_example_data.py.

python scripts/generate_example_data.py examples/example.smi examples/qed_property_example.txt

If you need to create a new vocabulary for a dataset you can use scripts/create_vocabulary.py it will also automatically add some special tokens at the top of your vocabulary file.

python scripts/create_vocabulary.py examples/qed_property_example.txt examples/vocab.txt

At this point the folder containing the vocabulary file can be used to load a tokenizer compatible with any ExpressionBertTokenizer:

>>> from terminator.tokenization import ExpressionBertTokenizer
>>> tokenizer = ExpressionBertTokenizer.from_pretrained('examples')
>>> text = '
   
    0.3936|CBr'
   
>>> tokens = tokenizer.tokenize(text)
>>> print(tokens)
['
   
    '
   , '_0_0_', '_._', '_3_-1_', '_9_-2_', '_3_-3_', '_6_-4_', '|', 'C', 'Br']
>>> token_indexes = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
>>> print(token_indexes)
[16, 17, 18, 28, 45, 34, 35, 19, 15, 63]
>>> tokenizer.build_inputs_with_special_tokens(token_indexes)
[12, 16, 17, 18, 28, 45, 34, 35, 19, 15, 63, 13]

Prepare some train/eval data line by line:

head -n 900 examples/qed_property_example.txt > examples/train.txt
tail -n +901 examples/qed_property_example.txt > examples/eval.txt

Launch the training:

python scripts/run_language_modeling.py --output_dir examples/models/xlnet_selfies \
    --config_name configs/xlnet_selfies.json --tokenizer_name ./examples/vocab.txt \
    --do_train --do_eval --learning_rate 1e-4 --num_train_epochs 5 --save_total_limit 2 \
    --save_steps 500 --per_gpu_train_batch_size 16 --evaluate_during_training --eval_data_file ./examples/eval.txt \
    --train_data_file ./examples/train.txt --line_by_line --block_size 510 --seed 42 --logging_steps 250

Exemplary model configurations (number of heads, layers, etc.) can be found in the configs folder.

Owner
International Business Machines
International Business Machines
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023