Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Overview

Regression Transformer

License: MIT

Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Summary.

Development setup

conda env create -f conda.yml
conda activate terminator
pip install -e .

Generate some data

Example data for QED can be generated using scripts/generate_example_data.py.

python scripts/generate_example_data.py examples/example.smi examples/qed_property_example.txt

If you need to create a new vocabulary for a dataset you can use scripts/create_vocabulary.py it will also automatically add some special tokens at the top of your vocabulary file.

python scripts/create_vocabulary.py examples/qed_property_example.txt examples/vocab.txt

At this point the folder containing the vocabulary file can be used to load a tokenizer compatible with any ExpressionBertTokenizer:

>>> from terminator.tokenization import ExpressionBertTokenizer
>>> tokenizer = ExpressionBertTokenizer.from_pretrained('examples')
>>> text = '
   
    0.3936|CBr'
   
>>> tokens = tokenizer.tokenize(text)
>>> print(tokens)
['
   
    '
   , '_0_0_', '_._', '_3_-1_', '_9_-2_', '_3_-3_', '_6_-4_', '|', 'C', 'Br']
>>> token_indexes = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
>>> print(token_indexes)
[16, 17, 18, 28, 45, 34, 35, 19, 15, 63]
>>> tokenizer.build_inputs_with_special_tokens(token_indexes)
[12, 16, 17, 18, 28, 45, 34, 35, 19, 15, 63, 13]

Prepare some train/eval data line by line:

head -n 900 examples/qed_property_example.txt > examples/train.txt
tail -n +901 examples/qed_property_example.txt > examples/eval.txt

Launch the training:

python scripts/run_language_modeling.py --output_dir examples/models/xlnet_selfies \
    --config_name configs/xlnet_selfies.json --tokenizer_name ./examples/vocab.txt \
    --do_train --do_eval --learning_rate 1e-4 --num_train_epochs 5 --save_total_limit 2 \
    --save_steps 500 --per_gpu_train_batch_size 16 --evaluate_during_training --eval_data_file ./examples/eval.txt \
    --train_data_file ./examples/train.txt --line_by_line --block_size 510 --seed 42 --logging_steps 250

Exemplary model configurations (number of heads, layers, etc.) can be found in the configs folder.

Owner
International Business Machines
International Business Machines
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022