Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview)

Overview

Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference [paper]

Baseline of this code is the official repository for this paper. We just replace the BNN regularizer from ELBO with enhanced Bayesian regularizer based on hierarchical-ELBO.

Alt text


Citation

If you find this work helpful, please cite it as:

@misc{
lee2021towards,
title={Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference},
author={Byung-Kwan Lee and Youngjoon Yu and Yong Man Ro},
year={2021},
url={https://openreview.net/forum?id=Cue2ZEBf12}
}

Hierarchical-Bayeisan-Defense

Dataset

  • CIFAR10
  • STL10
  • CIFAR100
  • Tiny-ImageNet

Network

  • VGG16 (for CIFAR-10/CIFAR-100/Tiny-ImageNet)
  • Aaron (for STL10)
  • WideResNet (for CIFAR-10/100)

Attack (by torchattack)

  • PGD attack
  • EOT-PGD attack

Defense methods

  • adv: Adversarial training
  • adv_vi: Adversarial training with Bayesian neural network
  • adv_hvi: Adversarial training with Enhanced Bayesian neural network based on hierarchical-ELBO

How to Train

1. Adversarial training

Run train_adv.sh

lr=0.01
steps=10
max_norm=0.03
data=tiny # or `cifar10`, `stl10`, `cifar100`
root=./datasets
model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
model_out=./checkpoint/${data}_${model}_${max_norm}_adv
echo "Loading: " ${model_out}
CUDA_VISIBLE_DEVICES=0 python ./main_adv.py \
                        --lr ${lr} \
                        --step ${steps} \
                        --max_norm ${max_norm} \
                        --data ${data} \
                        --model ${model} \
                        --root ${root} \
                        --model_out ${model_out}.pth \

2. Adversarial training with BNN

Run train_adv_vi.sh

lr=0.01
steps=10
max_norm=0.03
sigma_0=0.1
init_s=0.1
data=tiny # or `cifar10`, `stl10`, `cifar100`
root=./datasets
model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
model_out=./checkpoint/${data}_${model}_${max_norm}_adv_vi
echo "Loading: " ${model_out}
CUDA_VISIBLE_DEVICES=0 python3 ./main_adv_vi.py \
                        --lr ${lr} \
                        --step ${steps} \
                        --max_norm ${max_norm} \
                        --sigma_0 ${sigma_0} \
                        --init_s ${init_s} \
                        --data ${data} \
                        --model ${model} \
                        --root ${root} \
                        --model_out ${model_out}.pth \

3. Adversarial training with enhanced Bayesian regularizer based on hierarchical-ELBO

Run train_adv_hvi.sh

lr=0.01
steps=10
max_norm=0.03
sigma_0=0.1
init_s=0.1
data=tiny # or `cifar10`, `stl10`, `cifar100`
root=./datasets
model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
model_out=./checkpoint/${data}_${model}_${max_norm}_adv_hvi
echo "Loading: " ${model_out}
CUDA_VISIBLE_DEVICES=0 python3 ./main_adv_hvi.py \
                        --lr ${lr} \
                        --step ${steps} \
                        --max_norm ${max_norm} \
                        --sigma_0 ${sigma_0} \
                        --init_s ${init_s} \
                        --data ${data} \
                        --model ${model} \
                        --root ${root} \
                        --model_out ${model_out}.pth \

How to Test

Testing adversarial robustness

Run acc_under_attack.sh

model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
defense=adv_hvi # or `adv_vi`, `adv`
data=tiny-imagenet # or `cifar10`, `stl10`, `cifar100`
root=./datasets
n_ensemble=50
step=10
max_norm=0.03
echo "Loading" ./checkpoint/${data}_${model}_${max_norm}_${defense}.pth

CUDA_VISIBLE_DEVICES=0 python3 acc_under_attack.py \
    --model $model \
    --defense $defense \
    --data $data \
    --root $root \
    --n_ensemble $n_ensemble \
    --step $step \
    --max_norm $max_norm

How to check the learning parameters and KL divergence

Run check_parameters.sh

model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
defense=adv_hvi # or `adv_vi`
data=tiny-imagenet # or `cifar10`, `stl10`, `cifar100`
max_norm=0.03
echo "Loading" ./checkpoint/${data}_${model}_${max_norm}_${defense}.pth

CUDA_VISIBLE_DEVICES=0 python3 check_parameters.py \
    --model $model \
    --defense $defense \
    --data $data \
    --max_norm $max_norm \

How to check uncertainty by predictive entropy

Run uncertainty.sh

model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
defense=adv_hvi # or `adv_vi`
data=tiny-imagenet # or `cifar10`, `stl10`, `cifar100`
root=./datasets
n_ensemble=50
step=10
max_norm=0.03
echo "Loading" ./checkpoint/${data}_${model}_${max_norm}_${defense}.pth

CUDA_VISIBLE_DEVICES=0 python3 uncertainty.py \
    --model $model \
    --defense $defense \
    --data $data \
    --root $root \
    --n_ensemble $n_ensemble \
    --step $step \
    --max_norm $max_norm
Owner
LBK
Ph.D Candidate, KAIST EE
LBK
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022