Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Related tags

Deep Learningqdtrack
Overview

Quasi-Dense Tracking

This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking.

We present a trailer that consists of method illustrations and tracking visualizations. Take a look!

If you have any questions, please go to Discussions.

Abstract

Similarity learning has been recognized as a crucial step for object tracking. However, existing multiple object tracking methods only use sparse ground truth matching as the training objective, while ignoring the majority of the informative regions on the images. In this paper, we present Quasi-Dense Similarity Learning, which densely samples hundreds of region proposals on a pair of images for contrastive learning. We can naturally combine this similarity learning with existing detection methods to build Quasi-Dense Tracking (QDTrack) without turning to displacement regression or motion priors. We also find that the resulting distinctive feature space admits a simple nearest neighbor search at the inference time. Despite its simplicity, QDTrack outperforms all existing methods on MOT, BDD100K, Waymo, and TAO tracking benchmarks. It achieves 68.7 MOTA at 20.3 FPS on MOT17 without using external training data. Compared to methods with similar detectors, it boosts almost 10 points of MOTA and significantly decreases the number of ID switches on BDD100K and Waymo datasets.

Quasi-dense matching

Main results

Without bells and whistles, our method outperforms the states of the art on MOT, BDD100K, Waymo, and TAO benchmarks.

BDD100K test set

mMOTA mIDF1 ID Sw.
35.5 52.3 10790

MOT

Dataset MOTA IDF1 ID Sw. MT ML
MOT16 69.8 67.1 1097 316 150
MOT17 68.7 66.3 3378 957 516

Waymo validation set

Category MOTA IDF1 ID Sw.
Vehicle 55.6 66.2 24309
Pedestrian 50.3 58.4 6347
Cyclist 26.2 45.7 56
All 44.0 56.8 30712

TAO

Split AP50 AP75 AP
val 16.1 5.0 7.0
test 12.4 4.5 5.2

Installation

Please refer to INSTALL.md for installation instructions.

Usages

Please refer to GET_STARTED.md for dataset preparation and running instructions.

We release pretrained models on BDD100K dataset for testing.

More implementations / models on the following benchmarks will be released later:

  • Waymo
  • MOT16 / MOT17 / MOT20
  • TAO

Citation

@InProceedings{qdtrack,
  title = {Quasi-Dense Similarity Learning for Multiple Object Tracking},
  author = {Pang, Jiangmiao and Qiu, Linlu and Li, Xia and Chen, Haofeng and Li, Qi and Darrell, Trevor and Yu, Fisher},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  month = {June},
  year = {2021}
}
Comments
  • TypeError : Resnet : __init__() got an unexpected keyword argument 'init_cfg'

    TypeError : Resnet : __init__() got an unexpected keyword argument 'init_cfg'

    Greetings,

    I am currently using qdtrack in python 3.8, Cuda 11 based environment for RTX 3090 GPU. While training as well as testing, I am getting this error. All required datasets in required locations have been downloaded and maintained. Any help would be appreciated.

    opened by AmanGoyal99 12
  • Inconsistent Results on BDD100K Tracking Validation Set

    Inconsistent Results on BDD100K Tracking Validation Set

    Hi there.

    I ran the pre-trained BDD100K model on the tracking validation set and the resulting MOTA IDF1 scores are lower than what QDTrack claim: MOTA: 54.5, IDF1: 66.7 vs your MOTA: 63.5, IDF1 71.5.

    Kindly verify if this is the case for you or if there are any missing settings.

    I followed the instructions and ran this command: sh ./tools/dist_test.sh ./configs/bdd100k/qdtrack-frcnn_r50_fpn_12e_bdd100k.py ./ckpts/mmdet/qdtrack_frcnn_r50_fpn_12e_bdd100k_13328aed.pth 2 --out exp.pkl --eval track

    opened by taheranjary 8
  • Evaluation results on TAO-val

    Evaluation results on TAO-val

    Hello,

    When I train the model with your code for TAO (i.e., pretrain on LVIS and finetune on TAO-train), I get the following final results on TAO-val. which are lower than the scores reported in the original paper.

    |mAP0.5 | mAP0.75 | mAP[0.5:0.95] | |---------|---------|---------| |13.8 | 5.5 | 6.5 | | 16.1 | 5.0 | 7.0 |

    • above : reproduced // below : original

    Are there any issues that I have to consider for getting the original score?

    Thanks,

    opened by shwoo93 8
  • Training loss/Acc diagram

    Training loss/Acc diagram

    Thanks for the great work!

    I am trying to retrain QDTrack on BDD100k, however, it is converging really slowly (at least for the first epochs). Therefore I wanted to ask, whether it is possible to share your diagrams on training loss and acc?

    Thanks in advance!

    opened by LisaBernhardt 7
  • Unclear which links to pick from BDD website for dataset prep

    Unclear which links to pick from BDD website for dataset prep

    The Readme indicates Detection and Tracking sets, but the site shows 11 options, including: Images, MOT 2020 Labels, MOT 2020 Data, Detection 2020 Labels.

    Also, clicking MOT 2020 Data shows many different options. Should they all be downloaded?

    opened by diesendruck 7
  • about train

    about train

    when I train the net,Epoch 1 ,200/171305 ,the result as follow: lr: 7.992e-03,loss_rpn_cls: nan, loss_rpn_bbox: nan, loss_cls: nan, acc: 81.8194, loss_bbox: nan, loss_track: nan, loss_track_aux: nan, loss: nan why?

    opened by ningqing123 6
  • Is customization of backbone possible as mentioned in the mmdet library ?

    Is customization of backbone possible as mentioned in the mmdet library ?

    Kindly let me know if customization of backbone as mentioned in mmdet library could be used with qdtrack as well ?

    LInk : https://github.com/open-mmlab/mmdetection/blob/master/docs/tutorials/customize_models.md#add-a-new-backbone

    opened by AmanGoyal99 5
  • Your BDD100K instructions are unclear

    Your BDD100K instructions are unclear

    This is what you are saying:

    
    On the official download page, the required data and annotations are
    
    detection set images: Images
    detection set annotations: Detection 2020 Labels
    tracking set images: MOT 2020 Data
    tracking set annotations: MOT 2020 Labels
    

    But there is no Images or MOT 2020 Data on the official website for BDD

    opened by ghost 5
  • I'm confusing with the meaning of auxiliary loss

    I'm confusing with the meaning of auxiliary loss

    Hi , thanks for your great work. According to the paper, There is an auliliary loss, I do not really understand the intuition of this loss. 螢幕擷取畫面 (9)

    Can you give me some more explanation of this loss? Thanks.

    opened by hcv1027 4
  • RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

    RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

    Thank you for your paper and this repo! I would like to test your pretrained model on the BDD100k dataset. Therefore I followed the instructions (https://github.com/SysCV/qdtrack/blob/master/docs/GET_STARTED.md) - downloaded BDD100k, converted annotations as described and stored everything as your folder structure suggests.

    I used 'single-gpu testing' in the chapter 'Test a Model' and executed the following command in the terminal: python tools/test.py ${QDTrack}/configs/qdtrack-frcnn_r50_fpn_12e_bdd100k.py ${QDTrack}/pretrained_models/qdtrack-frcnn_r50_fpn_12e_bdd100k-13328aed.pth --out testrun_01.pkl --eval track --show-dir ${QDTrack}/data/results

    ${QDTrack} = indicates the path on my machine to qdtrack

    I get the following error: image

    Could you please help me solving this issue. Thanks a lot!

    opened by LisaBernhardt 4
  • about MOT17: loss_track degrades to zero after 50 iterations

    about MOT17: loss_track degrades to zero after 50 iterations

    Thanks for your great work! I'm now trying to run qdtrack on MOT17. I find the detection part went well during training and reached a reasonable mAP score. But, the loss of the quasi-dense embedding part degraded fastly to zero within 100 iterations, and obtained very low MOTA, MOTP, IDF1, etc., after training. Note that I modified nothing except the code related to dataset, which I've checked carefully thus I believe is not the reason. Should I modify the settings of quasi-dense embedding head to make it work? Do you have any suggestions? Thank you very much!

    opened by wswdx 4
  • detector freeze problem

    detector freeze problem

    Hi.

    I'm going to freeze the parameters of detector as you say(https://github.com/SysCV/qdtrack/issues/126).

    In qdtrack/models/mot/qdtrack.py, I tried to freeze the detector using freeze_detector(freeze_detector = True). But, when freeze_detector = True, self.detector, I got this error.

    Traceback (most recent call last): File "tools/train.py", line 169, in main() File "tools/train.py", line 140, in main test_cfg=cfg.get('test_cfg')) File "/workspace/qdtrack/qdtrack/models/builder.py", line 15, in build_model return build(cfg, MODELS, dict(train_cfg=train_cfg, test_cfg=test_cfg)) File "/workspace/mmcv/mmcv/cnn/builder.py", line 27, in build_model_from_cfg return build_from_cfg(cfg, registry, default_args) File "/workspace/mmcv/mmcv/utils/registry.py", line 72, in build_from_cfg raise type(e)(f'{obj_cls.name}: {e}') AttributeError: QDTrack: 'QDTrack' object has no attribute 'backbone'

    image

    Here is the config file I used. image

    I think, image be caused by self.detector.

    How can I put the backbone and neck, rpn_head, roi_head.bbox_head of the detector config file(/configs/base/faster_rcnn_r50_fpn.py) in self.detector?

    Thank you.

    opened by YOOHYOJEONG 1
  • Can I train only tracker?

    Can I train only tracker?

    Hi.

    I trained the detector using mmcv. And, I want to use the detector checkpoint trained using mmcv for the detector of qdtrack without any additional detector learning. In this case, Can I train only tracker of qdtrack?

    If I enter trained checkpoint using mmcv in init_cfg=dict(checkpoint='') in detecotr, is it the same as training only the tracker I mentioned?

    Thank you.

    opened by YOOHYOJEONG 2
  • The model and loaded state dict do not match exactly

    The model and loaded state dict do not match exactly

    Hi,

    Thanks for open-sourcing the code of your great work! Looks like there are some bugs when running the current tools/inference.py.

    When using the configs/bdd100k/qdtrack-frcnn_r50_fpn_12e_bdd100k.py as config and qdtrack-frcnn_r50_fpn_12e_bdd100k-13328aed.pth as the checkpoint (from the google drive link provided in the README file), the model and loaded state dict do not match exactly. Looks like you updated the name of layers but didn't update the definition of the pre-trained model. Manually changing the layer names in the .pth file will work.

    The model and loaded state dict do not match exactly
    
    unexpected key in source state_dict: backbone.conv1.weight, backbone.bn1.weight, backbone.bn1.bias, backbone.bn1.running_mean, backbone.bn1.running_var, backbone.bn1.num_batches_tracked, backbone.layer1.0.conv1.weight, backbone.layer1.0.bn1.weight, backbone.layer1.0.bn1.bias, backbone.layer1.0.bn1.running_mean, backbone.layer1.0.bn1.running_var, backbone.layer1.0.bn1.num_batches_tracked, backbone.layer1.0.conv2.weight, backbone.layer1.0.bn2.weight, backbone.layer1.0.bn2.bias, backbone.layer1.0.bn2.running_mean, backbone.layer1.0.bn2.running_var, backbone.layer1.0.bn2.num_batches_tracked, backbone.layer1.0.conv3.weight, backbone.layer1.0.bn3.weight, backbone.layer1.0.bn3.bias, backbone.layer1.0.bn3.running_mean, backbone.layer1.0.bn3.running_var, backbone.layer1.0.bn3.num_batches_tracked, backbone.layer1.0.downsample.0.weight, backbone.layer1.0.downsample.1.weight, backbone.layer1.0.downsample.1.bias, backbone.layer1.0.downsample.1.running_mean, backbone.layer1.0.downsample.1.running_var, backbone.layer1.0.downsample.1.num_batches_tracked, backbone.layer1.1.conv1.weight, backbone.layer1.1.bn1.weight, backbone.layer1.1.bn1.bias, backbone.layer1.1.bn1.running_mean, backbone.layer1.1.bn1.running_var, backbone.layer1.1.bn1.num_batches_tracked, backbone.layer1.1.conv2.weight, backbone.layer1.1.bn2.weight, backbone.layer1.1.bn2.bias, backbone.layer1.1.bn2.running_mean, backbone.layer1.1.bn2.running_var, backbone.layer1.1.bn2.num_batches_tracked, backbone.layer1.1.conv3.weight, backbone.layer1.1.bn3.weight, backbone.layer1.1.bn3.bias, backbone.layer1.1.bn3.running_mean, backbone.layer1.1.bn3.running_var, backbone.layer1.1.bn3.num_batches_tracked, backbone.layer1.2.conv1.weight, backbone.layer1.2.bn1.weight, backbone.layer1.2.bn1.bias, backbone.layer1.2.bn1.running_mean, backbone.layer1.2.bn1.running_var, backbone.layer1.2.bn1.num_batches_tracked, backbone.layer1.2.conv2.weight, backbone.layer1.2.bn2.weight, backbone.layer1.2.bn2.bias, backbone.layer1.2.bn2.running_mean, backbone.layer1.2.bn2.running_var, backbone.layer1.2.bn2.num_batches_tracked, backbone.layer1.2.conv3.weight, backbone.layer1.2.bn3.weight, backbone.layer1.2.bn3.bias, backbone.layer1.2.bn3.running_mean, backbone.layer1.2.bn3.running_var, backbone.layer1.2.bn3.num_batches_tracked, backbone.layer2.0.conv1.weight, backbone.layer2.0.bn1.weight, backbone.layer2.0.bn1.bias, backbone.layer2.0.bn1.running_mean, backbone.layer2.0.bn1.running_var, backbone.layer2.0.bn1.num_batches_tracked, backbone.layer2.0.conv2.weight, backbone.layer2.0.bn2.weight, backbone.layer2.0.bn2.bias, backbone.layer2.0.bn2.running_mean, backbone.layer2.0.bn2.running_var, backbone.layer2.0.bn2.num_batches_tracked, backbone.layer2.0.conv3.weight, backbone.layer2.0.bn3.weight, backbone.layer2.0.bn3.bias, backbone.layer2.0.bn3.running_mean, backbone.layer2.0.bn3.running_var, backbone.layer2.0.bn3.num_batches_tracked, backbone.layer2.0.downsample.0.weight, backbone.layer2.0.downsample.1.weight, backbone.layer2.0.downsample.1.bias, backbone.layer2.0.downsample.1.running_mean, backbone.layer2.0.downsample.1.running_var, backbone.layer2.0.downsample.1.num_batches_tracked, backbone.layer2.1.conv1.weight, backbone.layer2.1.bn1.weight, backbone.layer2.1.bn1.bias, backbone.layer2.1.bn1.running_mean, backbone.layer2.1.bn1.running_var, backbone.layer2.1.bn1.num_batches_tracked, backbone.layer2.1.conv2.weight, backbone.layer2.1.bn2.weight, backbone.layer2.1.bn2.bias, backbone.layer2.1.bn2.running_mean, backbone.layer2.1.bn2.running_var, backbone.layer2.1.bn2.num_batches_tracked, backbone.layer2.1.conv3.weight, backbone.layer2.1.bn3.weight, backbone.layer2.1.bn3.bias, backbone.layer2.1.bn3.running_mean, backbone.layer2.1.bn3.running_var, backbone.layer2.1.bn3.num_batches_tracked, backbone.layer2.2.conv1.weight, backbone.layer2.2.bn1.weight, backbone.layer2.2.bn1.bias, backbone.layer2.2.bn1.running_mean, backbone.layer2.2.bn1.running_var, backbone.layer2.2.bn1.num_batches_tracked, backbone.layer2.2.conv2.weight, backbone.layer2.2.bn2.weight, backbone.layer2.2.bn2.bias, backbone.layer2.2.bn2.running_mean, backbone.layer2.2.bn2.running_var, backbone.layer2.2.bn2.num_batches_tracked, backbone.layer2.2.conv3.weight, backbone.layer2.2.bn3.weight, backbone.layer2.2.bn3.bias, backbone.layer2.2.bn3.running_mean, backbone.layer2.2.bn3.running_var, backbone.layer2.2.bn3.num_batches_tracked, backbone.layer2.3.conv1.weight, backbone.layer2.3.bn1.weight, backbone.layer2.3.bn1.bias, backbone.layer2.3.bn1.running_mean, backbone.layer2.3.bn1.running_var, backbone.layer2.3.bn1.num_batches_tracked, backbone.layer2.3.conv2.weight, backbone.layer2.3.bn2.weight, backbone.layer2.3.bn2.bias, backbone.layer2.3.bn2.running_mean, backbone.layer2.3.bn2.running_var, backbone.layer2.3.bn2.num_batches_tracked, backbone.layer2.3.conv3.weight, backbone.layer2.3.bn3.weight, backbone.layer2.3.bn3.bias, backbone.layer2.3.bn3.running_mean, backbone.layer2.3.bn3.running_var, backbone.layer2.3.bn3.num_batches_tracked, backbone.layer3.0.conv1.weight, backbone.layer3.0.bn1.weight, backbone.layer3.0.bn1.bias, backbone.layer3.0.bn1.running_mean, backbone.layer3.0.bn1.running_var, backbone.layer3.0.bn1.num_batches_tracked, backbone.layer3.0.conv2.weight, backbone.layer3.0.bn2.weight, backbone.layer3.0.bn2.bias, backbone.layer3.0.bn2.running_mean, backbone.layer3.0.bn2.running_var, backbone.layer3.0.bn2.num_batches_tracked, backbone.layer3.0.conv3.weight, backbone.layer3.0.bn3.weight, backbone.layer3.0.bn3.bias, backbone.layer3.0.bn3.running_mean, backbone.layer3.0.bn3.running_var, backbone.layer3.0.bn3.num_batches_tracked, backbone.layer3.0.downsample.0.weight, backbone.layer3.0.downsample.1.weight, backbone.layer3.0.downsample.1.bias, backbone.layer3.0.downsample.1.running_mean, backbone.layer3.0.downsample.1.running_var, backbone.layer3.0.downsample.1.num_batches_tracked, backbone.layer3.1.conv1.weight, backbone.layer3.1.bn1.weight, backbone.layer3.1.bn1.bias, backbone.layer3.1.bn1.running_mean, backbone.layer3.1.bn1.running_var, backbone.layer3.1.bn1.num_batches_tracked, backbone.layer3.1.conv2.weight, backbone.layer3.1.bn2.weight, backbone.layer3.1.bn2.bias, backbone.layer3.1.bn2.running_mean, backbone.layer3.1.bn2.running_var, backbone.layer3.1.bn2.num_batches_tracked, backbone.layer3.1.conv3.weight, backbone.layer3.1.bn3.weight, backbone.layer3.1.bn3.bias, backbone.layer3.1.bn3.running_mean, backbone.layer3.1.bn3.running_var, backbone.layer3.1.bn3.num_batches_tracked, backbone.layer3.2.conv1.weight, backbone.layer3.2.bn1.weight, backbone.layer3.2.bn1.bias, backbone.layer3.2.bn1.running_mean, backbone.layer3.2.bn1.running_var, backbone.layer3.2.bn1.num_batches_tracked, backbone.layer3.2.conv2.weight, backbone.layer3.2.bn2.weight, backbone.layer3.2.bn2.bias, backbone.layer3.2.bn2.running_mean, backbone.layer3.2.bn2.running_var, backbone.layer3.2.bn2.num_batches_tracked, backbone.layer3.2.conv3.weight, backbone.layer3.2.bn3.weight, backbone.layer3.2.bn3.bias, backbone.layer3.2.bn3.running_mean, backbone.layer3.2.bn3.running_var, backbone.layer3.2.bn3.num_batches_tracked, backbone.layer3.3.conv1.weight, backbone.layer3.3.bn1.weight, backbone.layer3.3.bn1.bias, backbone.layer3.3.bn1.running_mean, backbone.layer3.3.bn1.running_var, backbone.layer3.3.bn1.num_batches_tracked, backbone.layer3.3.conv2.weight, backbone.layer3.3.bn2.weight, backbone.layer3.3.bn2.bias, backbone.layer3.3.bn2.running_mean, backbone.layer3.3.bn2.running_var, backbone.layer3.3.bn2.num_batches_tracked, backbone.layer3.3.conv3.weight, backbone.layer3.3.bn3.weight, backbone.layer3.3.bn3.bias, backbone.layer3.3.bn3.running_mean, backbone.layer3.3.bn3.running_var, backbone.layer3.3.bn3.num_batches_tracked, backbone.layer3.4.conv1.weight, backbone.layer3.4.bn1.weight, backbone.layer3.4.bn1.bias, backbone.layer3.4.bn1.running_mean, backbone.layer3.4.bn1.running_var, backbone.layer3.4.bn1.num_batches_tracked, backbone.layer3.4.conv2.weight, backbone.layer3.4.bn2.weight, backbone.layer3.4.bn2.bias, backbone.layer3.4.bn2.running_mean, backbone.layer3.4.bn2.running_var, backbone.layer3.4.bn2.num_batches_tracked, backbone.layer3.4.conv3.weight, backbone.layer3.4.bn3.weight, backbone.layer3.4.bn3.bias, backbone.layer3.4.bn3.running_mean, backbone.layer3.4.bn3.running_var, backbone.layer3.4.bn3.num_batches_tracked, backbone.layer3.5.conv1.weight, backbone.layer3.5.bn1.weight, backbone.layer3.5.bn1.bias, backbone.layer3.5.bn1.running_mean, backbone.layer3.5.bn1.running_var, backbone.layer3.5.bn1.num_batches_tracked, backbone.layer3.5.conv2.weight, backbone.layer3.5.bn2.weight, backbone.layer3.5.bn2.bias, backbone.layer3.5.bn2.running_mean, backbone.layer3.5.bn2.running_var, backbone.layer3.5.bn2.num_batches_tracked, backbone.layer3.5.conv3.weight, backbone.layer3.5.bn3.weight, backbone.layer3.5.bn3.bias, backbone.layer3.5.bn3.running_mean, backbone.layer3.5.bn3.running_var, backbone.layer3.5.bn3.num_batches_tracked, backbone.layer4.0.conv1.weight, backbone.layer4.0.bn1.weight, backbone.layer4.0.bn1.bias, backbone.layer4.0.bn1.running_mean, backbone.layer4.0.bn1.running_var, backbone.layer4.0.bn1.num_batches_tracked, backbone.layer4.0.conv2.weight, backbone.layer4.0.bn2.weight, backbone.layer4.0.bn2.bias, backbone.layer4.0.bn2.running_mean, backbone.layer4.0.bn2.running_var, backbone.layer4.0.bn2.num_batches_tracked, backbone.layer4.0.conv3.weight, backbone.layer4.0.bn3.weight, backbone.layer4.0.bn3.bias, backbone.layer4.0.bn3.running_mean, backbone.layer4.0.bn3.running_var, backbone.layer4.0.bn3.num_batches_tracked, backbone.layer4.0.downsample.0.weight, backbone.layer4.0.downsample.1.weight, backbone.layer4.0.downsample.1.bias, backbone.layer4.0.downsample.1.running_mean, backbone.layer4.0.downsample.1.running_var, backbone.layer4.0.downsample.1.num_batches_tracked, backbone.layer4.1.conv1.weight, backbone.layer4.1.bn1.weight, backbone.layer4.1.bn1.bias, backbone.layer4.1.bn1.running_mean, backbone.layer4.1.bn1.running_var, backbone.layer4.1.bn1.num_batches_tracked, backbone.layer4.1.conv2.weight, backbone.layer4.1.bn2.weight, backbone.layer4.1.bn2.bias, backbone.layer4.1.bn2.running_mean, backbone.layer4.1.bn2.running_var, backbone.layer4.1.bn2.num_batches_tracked, backbone.layer4.1.conv3.weight, backbone.layer4.1.bn3.weight, backbone.layer4.1.bn3.bias, backbone.layer4.1.bn3.running_mean, backbone.layer4.1.bn3.running_var, backbone.layer4.1.bn3.num_batches_tracked, backbone.layer4.2.conv1.weight, backbone.layer4.2.bn1.weight, backbone.layer4.2.bn1.bias, backbone.layer4.2.bn1.running_mean, backbone.layer4.2.bn1.running_var, backbone.layer4.2.bn1.num_batches_tracked, backbone.layer4.2.conv2.weight, backbone.layer4.2.bn2.weight, backbone.layer4.2.bn2.bias, backbone.layer4.2.bn2.running_mean, backbone.layer4.2.bn2.running_var, backbone.layer4.2.bn2.num_batches_tracked, backbone.layer4.2.conv3.weight, backbone.layer4.2.bn3.weight, backbone.layer4.2.bn3.bias, backbone.layer4.2.bn3.running_mean, backbone.layer4.2.bn3.running_var, backbone.layer4.2.bn3.num_batches_tracked, neck.lateral_convs.0.conv.weight, neck.lateral_convs.0.conv.bias, neck.lateral_convs.1.conv.weight, neck.lateral_convs.1.conv.bias, neck.lateral_convs.2.conv.weight, neck.lateral_convs.2.conv.bias, neck.lateral_convs.3.conv.weight, neck.lateral_convs.3.conv.bias, neck.fpn_convs.0.conv.weight, neck.fpn_convs.0.conv.bias, neck.fpn_convs.1.conv.weight, neck.fpn_convs.1.conv.bias, neck.fpn_convs.2.conv.weight, neck.fpn_convs.2.conv.bias, neck.fpn_convs.3.conv.weight, neck.fpn_convs.3.conv.bias, rpn_head.rpn_conv.weight, rpn_head.rpn_conv.bias, rpn_head.rpn_cls.weight, rpn_head.rpn_cls.bias, rpn_head.rpn_reg.weight, rpn_head.rpn_reg.bias, roi_head.bbox_head.fc_cls.weight, roi_head.bbox_head.fc_cls.bias, roi_head.bbox_head.fc_reg.weight, roi_head.bbox_head.fc_reg.bias, roi_head.bbox_head.shared_fcs.0.weight, roi_head.bbox_head.shared_fcs.0.bias, roi_head.bbox_head.shared_fcs.1.weight, roi_head.bbox_head.shared_fcs.1.bias, roi_head.track_head.convs.0.conv.weight, roi_head.track_head.convs.0.gn.weight, roi_head.track_head.convs.0.gn.bias, roi_head.track_head.convs.1.conv.weight, roi_head.track_head.convs.1.gn.weight, roi_head.track_head.convs.1.gn.bias, roi_head.track_head.convs.2.conv.weight, roi_head.track_head.convs.2.gn.weight, roi_head.track_head.convs.2.gn.bias, roi_head.track_head.convs.3.conv.weight, roi_head.track_head.convs.3.gn.weight, roi_head.track_head.convs.3.gn.bias, roi_head.track_head.fcs.0.weight, roi_head.track_head.fcs.0.bias, roi_head.track_head.fc_embed.weight, roi_head.track_head.fc_embed.bias
    
    missing keys in source state_dict: detector.backbone.conv1.weight, detector.backbone.bn1.weight, detector.backbone.bn1.bias, detector.backbone.bn1.running_mean, detector.backbone.bn1.running_var, detector.backbone.layer1.0.conv1.weight, detector.backbone.layer1.0.bn1.weight, detector.backbone.layer1.0.bn1.bias, detector.backbone.layer1.0.bn1.running_mean, detector.backbone.layer1.0.bn1.running_var, detector.backbone.layer1.0.conv2.weight, detector.backbone.layer1.0.bn2.weight, detector.backbone.layer1.0.bn2.bias, detector.backbone.layer1.0.bn2.running_mean, detector.backbone.layer1.0.bn2.running_var, detector.backbone.layer1.0.conv3.weight, detector.backbone.layer1.0.bn3.weight, detector.backbone.layer1.0.bn3.bias, detector.backbone.layer1.0.bn3.running_mean, detector.backbone.layer1.0.bn3.running_var, detector.backbone.layer1.0.downsample.0.weight, detector.backbone.layer1.0.downsample.1.weight, detector.backbone.layer1.0.downsample.1.bias, detector.backbone.layer1.0.downsample.1.running_mean, detector.backbone.layer1.0.downsample.1.running_var, detector.backbone.layer1.1.conv1.weight, detector.backbone.layer1.1.bn1.weight, detector.backbone.layer1.1.bn1.bias, detector.backbone.layer1.1.bn1.running_mean, detector.backbone.layer1.1.bn1.running_var, detector.backbone.layer1.1.conv2.weight, detector.backbone.layer1.1.bn2.weight, detector.backbone.layer1.1.bn2.bias, detector.backbone.layer1.1.bn2.running_mean, detector.backbone.layer1.1.bn2.running_var, detector.backbone.layer1.1.conv3.weight, detector.backbone.layer1.1.bn3.weight, detector.backbone.layer1.1.bn3.bias, detector.backbone.layer1.1.bn3.running_mean, detector.backbone.layer1.1.bn3.running_var, detector.backbone.layer1.2.conv1.weight, detector.backbone.layer1.2.bn1.weight, detector.backbone.layer1.2.bn1.bias, detector.backbone.layer1.2.bn1.running_mean, detector.backbone.layer1.2.bn1.running_var, detector.backbone.layer1.2.conv2.weight, detector.backbone.layer1.2.bn2.weight, detector.backbone.layer1.2.bn2.bias, detector.backbone.layer1.2.bn2.running_mean, detector.backbone.layer1.2.bn2.running_var, detector.backbone.layer1.2.conv3.weight, detector.backbone.layer1.2.bn3.weight, detector.backbone.layer1.2.bn3.bias, detector.backbone.layer1.2.bn3.running_mean, detector.backbone.layer1.2.bn3.running_var, detector.backbone.layer2.0.conv1.weight, detector.backbone.layer2.0.bn1.weight, detector.backbone.layer2.0.bn1.bias, detector.backbone.layer2.0.bn1.running_mean, detector.backbone.layer2.0.bn1.running_var, detector.backbone.layer2.0.conv2.weight, detector.backbone.layer2.0.bn2.weight, detector.backbone.layer2.0.bn2.bias, detector.backbone.layer2.0.bn2.running_mean, detector.backbone.layer2.0.bn2.running_var, detector.backbone.layer2.0.conv3.weight, detector.backbone.layer2.0.bn3.weight, detector.backbone.layer2.0.bn3.bias, detector.backbone.layer2.0.bn3.running_mean, detector.backbone.layer2.0.bn3.running_var, detector.backbone.layer2.0.downsample.0.weight, detector.backbone.layer2.0.downsample.1.weight, detector.backbone.layer2.0.downsample.1.bias, detector.backbone.layer2.0.downsample.1.running_mean, detector.backbone.layer2.0.downsample.1.running_var, detector.backbone.layer2.1.conv1.weight, detector.backbone.layer2.1.bn1.weight, detector.backbone.layer2.1.bn1.bias, detector.backbone.layer2.1.bn1.running_mean, detector.backbone.layer2.1.bn1.running_var, detector.backbone.layer2.1.conv2.weight, detector.backbone.layer2.1.bn2.weight, detector.backbone.layer2.1.bn2.bias, detector.backbone.layer2.1.bn2.running_mean, detector.backbone.layer2.1.bn2.running_var, detector.backbone.layer2.1.conv3.weight, detector.backbone.layer2.1.bn3.weight, detector.backbone.layer2.1.bn3.bias, detector.backbone.layer2.1.bn3.running_mean, detector.backbone.layer2.1.bn3.running_var, detector.backbone.layer2.2.conv1.weight, detector.backbone.layer2.2.bn1.weight, detector.backbone.layer2.2.bn1.bias, detector.backbone.layer2.2.bn1.running_mean, detector.backbone.layer2.2.bn1.running_var, detector.backbone.layer2.2.conv2.weight, detector.backbone.layer2.2.bn2.weight, detector.backbone.layer2.2.bn2.bias, detector.backbone.layer2.2.bn2.running_mean, detector.backbone.layer2.2.bn2.running_var, detector.backbone.layer2.2.conv3.weight, detector.backbone.layer2.2.bn3.weight, detector.backbone.layer2.2.bn3.bias, detector.backbone.layer2.2.bn3.running_mean, detector.backbone.layer2.2.bn3.running_var, detector.backbone.layer2.3.conv1.weight, detector.backbone.layer2.3.bn1.weight, detector.backbone.layer2.3.bn1.bias, detector.backbone.layer2.3.bn1.running_mean, detector.backbone.layer2.3.bn1.running_var, detector.backbone.layer2.3.conv2.weight, detector.backbone.layer2.3.bn2.weight, detector.backbone.layer2.3.bn2.bias, detector.backbone.layer2.3.bn2.running_mean, detector.backbone.layer2.3.bn2.running_var, detector.backbone.layer2.3.conv3.weight, detector.backbone.layer2.3.bn3.weight, detector.backbone.layer2.3.bn3.bias, detector.backbone.layer2.3.bn3.running_mean, detector.backbone.layer2.3.bn3.running_var, detector.backbone.layer3.0.conv1.weight, detector.backbone.layer3.0.bn1.weight, detector.backbone.layer3.0.bn1.bias, detector.backbone.layer3.0.bn1.running_mean, detector.backbone.layer3.0.bn1.running_var, detector.backbone.layer3.0.conv2.weight, detector.backbone.layer3.0.bn2.weight, detector.backbone.layer3.0.bn2.bias, detector.backbone.layer3.0.bn2.running_mean, detector.backbone.layer3.0.bn2.running_var, detector.backbone.layer3.0.conv3.weight, detector.backbone.layer3.0.bn3.weight, detector.backbone.layer3.0.bn3.bias, detector.backbone.layer3.0.bn3.running_mean, detector.backbone.layer3.0.bn3.running_var, detector.backbone.layer3.0.downsample.0.weight, detector.backbone.layer3.0.downsample.1.weight, detector.backbone.layer3.0.downsample.1.bias, detector.backbone.layer3.0.downsample.1.running_mean, detector.backbone.layer3.0.downsample.1.running_var, detector.backbone.layer3.1.conv1.weight, detector.backbone.layer3.1.bn1.weight, detector.backbone.layer3.1.bn1.bias, detector.backbone.layer3.1.bn1.running_mean, detector.backbone.layer3.1.bn1.running_var, detector.backbone.layer3.1.conv2.weight, detector.backbone.layer3.1.bn2.weight, detector.backbone.layer3.1.bn2.bias, detector.backbone.layer3.1.bn2.running_mean, detector.backbone.layer3.1.bn2.running_var, detector.backbone.layer3.1.conv3.weight, detector.backbone.layer3.1.bn3.weight, detector.backbone.layer3.1.bn3.bias, detector.backbone.layer3.1.bn3.running_mean, detector.backbone.layer3.1.bn3.running_var, detector.backbone.layer3.2.conv1.weight, detector.backbone.layer3.2.bn1.weight, detector.backbone.layer3.2.bn1.bias, detector.backbone.layer3.2.bn1.running_mean, detector.backbone.layer3.2.bn1.running_var, detector.backbone.layer3.2.conv2.weight, detector.backbone.layer3.2.bn2.weight, detector.backbone.layer3.2.bn2.bias, detector.backbone.layer3.2.bn2.running_mean, detector.backbone.layer3.2.bn2.running_var, detector.backbone.layer3.2.conv3.weight, detector.backbone.layer3.2.bn3.weight, detector.backbone.layer3.2.bn3.bias, detector.backbone.layer3.2.bn3.running_mean, detector.backbone.layer3.2.bn3.running_var, detector.backbone.layer3.3.conv1.weight, detector.backbone.layer3.3.bn1.weight, detector.backbone.layer3.3.bn1.bias, detector.backbone.layer3.3.bn1.running_mean, detector.backbone.layer3.3.bn1.running_var, detector.backbone.layer3.3.conv2.weight, detector.backbone.layer3.3.bn2.weight, detector.backbone.layer3.3.bn2.bias, detector.backbone.layer3.3.bn2.running_mean, detector.backbone.layer3.3.bn2.running_var, detector.backbone.layer3.3.conv3.weight, detector.backbone.layer3.3.bn3.weight, detector.backbone.layer3.3.bn3.bias, detector.backbone.layer3.3.bn3.running_mean, detector.backbone.layer3.3.bn3.running_var, detector.backbone.layer3.4.conv1.weight, detector.backbone.layer3.4.bn1.weight, detector.backbone.layer3.4.bn1.bias, detector.backbone.layer3.4.bn1.running_mean, detector.backbone.layer3.4.bn1.running_var, detector.backbone.layer3.4.conv2.weight, detector.backbone.layer3.4.bn2.weight, detector.backbone.layer3.4.bn2.bias, detector.backbone.layer3.4.bn2.running_mean, detector.backbone.layer3.4.bn2.running_var, detector.backbone.layer3.4.conv3.weight, detector.backbone.layer3.4.bn3.weight, detector.backbone.layer3.4.bn3.bias, detector.backbone.layer3.4.bn3.running_mean, detector.backbone.layer3.4.bn3.running_var, detector.backbone.layer3.5.conv1.weight, detector.backbone.layer3.5.bn1.weight, detector.backbone.layer3.5.bn1.bias, detector.backbone.layer3.5.bn1.running_mean, detector.backbone.layer3.5.bn1.running_var, detector.backbone.layer3.5.conv2.weight, detector.backbone.layer3.5.bn2.weight, detector.backbone.layer3.5.bn2.bias, detector.backbone.layer3.5.bn2.running_mean, detector.backbone.layer3.5.bn2.running_var, detector.backbone.layer3.5.conv3.weight, detector.backbone.layer3.5.bn3.weight, detector.backbone.layer3.5.bn3.bias, detector.backbone.layer3.5.bn3.running_mean, detector.backbone.layer3.5.bn3.running_var, detector.backbone.layer4.0.conv1.weight, detector.backbone.layer4.0.bn1.weight, detector.backbone.layer4.0.bn1.bias, detector.backbone.layer4.0.bn1.running_mean, detector.backbone.layer4.0.bn1.running_var, detector.backbone.layer4.0.conv2.weight, detector.backbone.layer4.0.bn2.weight, detector.backbone.layer4.0.bn2.bias, detector.backbone.layer4.0.bn2.running_mean, detector.backbone.layer4.0.bn2.running_var, detector.backbone.layer4.0.conv3.weight, detector.backbone.layer4.0.bn3.weight, detector.backbone.layer4.0.bn3.bias, detector.backbone.layer4.0.bn3.running_mean, detector.backbone.layer4.0.bn3.running_var, detector.backbone.layer4.0.downsample.0.weight, detector.backbone.layer4.0.downsample.1.weight, detector.backbone.layer4.0.downsample.1.bias, detector.backbone.layer4.0.downsample.1.running_mean, detector.backbone.layer4.0.downsample.1.running_var, detector.backbone.layer4.1.conv1.weight, detector.backbone.layer4.1.bn1.weight, detector.backbone.layer4.1.bn1.bias, detector.backbone.layer4.1.bn1.running_mean, detector.backbone.layer4.1.bn1.running_var, detector.backbone.layer4.1.conv2.weight, detector.backbone.layer4.1.bn2.weight, detector.backbone.layer4.1.bn2.bias, detector.backbone.layer4.1.bn2.running_mean, detector.backbone.layer4.1.bn2.running_var, detector.backbone.layer4.1.conv3.weight, detector.backbone.layer4.1.bn3.weight, detector.backbone.layer4.1.bn3.bias, detector.backbone.layer4.1.bn3.running_mean, detector.backbone.layer4.1.bn3.running_var, detector.backbone.layer4.2.conv1.weight, detector.backbone.layer4.2.bn1.weight, detector.backbone.layer4.2.bn1.bias, detector.backbone.layer4.2.bn1.running_mean, detector.backbone.layer4.2.bn1.running_var, detector.backbone.layer4.2.conv2.weight, detector.backbone.layer4.2.bn2.weight, detector.backbone.layer4.2.bn2.bias, detector.backbone.layer4.2.bn2.running_mean, detector.backbone.layer4.2.bn2.running_var, detector.backbone.layer4.2.conv3.weight, detector.backbone.layer4.2.bn3.weight, detector.backbone.layer4.2.bn3.bias, detector.backbone.layer4.2.bn3.running_mean, detector.backbone.layer4.2.bn3.running_var, detector.neck.lateral_convs.0.conv.weight, detector.neck.lateral_convs.0.conv.bias, detector.neck.lateral_convs.1.conv.weight, detector.neck.lateral_convs.1.conv.bias, detector.neck.lateral_convs.2.conv.weight, detector.neck.lateral_convs.2.conv.bias, detector.neck.lateral_convs.3.conv.weight, detector.neck.lateral_convs.3.conv.bias, detector.neck.fpn_convs.0.conv.weight, detector.neck.fpn_convs.0.conv.bias, detector.neck.fpn_convs.1.conv.weight, detector.neck.fpn_convs.1.conv.bias, detector.neck.fpn_convs.2.conv.weight, detector.neck.fpn_convs.2.conv.bias, detector.neck.fpn_convs.3.conv.weight, detector.neck.fpn_convs.3.conv.bias, detector.rpn_head.rpn_conv.weight, detector.rpn_head.rpn_conv.bias, detector.rpn_head.rpn_cls.weight, detector.rpn_head.rpn_cls.bias, detector.rpn_head.rpn_reg.weight, detector.rpn_head.rpn_reg.bias, detector.roi_head.bbox_head.fc_cls.weight, detector.roi_head.bbox_head.fc_cls.bias, detector.roi_head.bbox_head.fc_reg.weight, detector.roi_head.bbox_head.fc_reg.bias, detector.roi_head.bbox_head.shared_fcs.0.weight, detector.roi_head.bbox_head.shared_fcs.0.bias, detector.roi_head.bbox_head.shared_fcs.1.weight, detector.roi_head.bbox_head.shared_fcs.1.bias, track_head.track_head.convs.0.conv.weight, track_head.track_head.convs.0.gn.weight, track_head.track_head.convs.0.gn.bias, track_head.track_head.convs.1.conv.weight, track_head.track_head.convs.1.gn.weight, track_head.track_head.convs.1.gn.bias, track_head.track_head.convs.2.conv.weight, track_head.track_head.convs.2.gn.weight, track_head.track_head.convs.2.gn.bias, track_head.track_head.convs.3.conv.weight, track_head.track_head.convs.3.gn.weight, track_head.track_head.convs.3.gn.bias, track_head.track_head.fcs.0.weight, track_head.track_head.fcs.0.bias, track_head.track_head.fc_embed.weight, track_head.track_head.fc_embed.bias
    
    opened by yimingzhou1 1
  • BDD100k det conversion error

    BDD100k det conversion error

    When I try to run this command: python -m bdd100k.label.to_coco -m det -i bdd100k/labels/det_20/det_train.json -o data/bdd/labels/det_20/det_train_cocofmt.json I receive the following error:

    [2022-09-23 16:25:55,619 to_coco.py:301 main] Mode: det remove-ignore: False ignore-as-class: False [2022-09-23 16:25:55,619 to_coco.py:307 main] Loading annotations... [2022-09-23 16:26:02,429 to_coco.py:318 main] Converting annotations... 10%|████████ | 6879/69863 [00:00<00:08, 7435.14it/s] Traceback (most recent call last): File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/site-packages/bdd100k-1.0.0-py3.10.egg/bdd100k/label/to_coco.py", line 337, in main() File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/site-packages/bdd100k-1.0.0-py3.10.egg/bdd100k/label/to_coco.py", line 322, in main coco = bdd100k2coco_det( File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/site-packages/bdd100k-1.0.0-py3.10.egg/bdd100k/label/to_coco.py", line 145, in bdd100k2coco_det if frame["labels"]: KeyError: 'labels'

    This error does not occur when running with ${SET_NAME} equal to val

    opened by IMcDougall 0
  • The reference image and key image are exactly the same

    The reference image and key image are exactly the same

    In the article (QDTrack), the difference between the key image and the reference image is indicated by the image below.

    Screenshot 2022-09-05 113254

    However, when debugging the training code, I saw that the reference image metadata and key image metadata returned by the data loader are exactly the same.

    Screenshot 2022-09-05 103058

    Do I need to change a parameter before starting training or is this an error in the code? I would be glad if you inform me.

    opened by Hcayirli 4
Releases(v0.1)
Owner
ETH VIS Research Group
Visual Intelligence and Systems Group at ETH Zürich
ETH VIS Research Group
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021