This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

Related tags

Deep LearningIB-GAN
Overview

The PyTorch implementation of IB-GAN model of AAAI 2021

This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks) in AAAI 2021.

You can reproduce the experiment on dSprite (Color-dSprite, 3DChairs, and CelebA) dataset with the this code.

Current implementation is based on python==1.4.0. Please refer environments.yml for the environment settings.

Please refer to the Technical appendix page for more detailed information of hypter parameter settings for each experiment.

Contents

  • Main code for dsprites (and cdsprite): "main.py"

  • IB-GAN model for dsprites (and cdsprite): "./model/model.py"

  • Disentanglement Evaluation codes for dsprites (and cdsprite): "evaluator.py", "checkout_scores.ipynb"

  • Main code for 3d Chairs (and CelebA): "main2.py"

  • IB-GAN model for dsprites (and cdsprite): "./model/model2.py"

Visdom for visualization

Since the defulat visidom option for main.py is True, you first want to run Visidom server berfore excuting the main program by typing

python -m visdom.server -p 8097

Then you can observe the visualization of the "convergence plot and generated samples" for each training iterations from

localhost:8097

Reproducing dSprite experiment

  • dSprite dataset : "./data/dsprites-dataset/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz"

You can reproduce dSprite expreiment by typing:

python -W ignore main.py --seed 7 --z_dim 16 --r_dim 10 --batch_size 64 --optim rmsprop --dataset dsprites --viz True --viz_port 8097 --z_bias 0 --viz_name dsprites --beta 0.141 --alpha 1 --gamma 1 --G_lr 5e-5 --D_lr 1e-6 --max_iter 150000 --logiter 500 --ptriter 2500 --ckptiter 2500 --load_ckpt -1 --init_type normal --save_img True

Note, all the default parameter settings are optimally set up for the dSprite experiment (in the "main.py" file). For more details on the parameter settings for other datasets, please refer to the Technical appendix.

  • dSprite dataset for Kim's disentanglement score evaluation : Evauation file is currently not available. (will be update soon) The evaulation process and code is same as cdsprite experiment.

Reproducing Color-dSprite expreiemnt

  • Color-dSprite dataset : Color dSprite Dataset is currently not available.

But you can create Colored-dSprites dataset by changing RGB channel of the original dsprites dataset.

Each channel of RGB takes 8 discrete values as : [0.00, 36.42, 72.85, 109.28, 145.71, 182.14, 218.57, 255.00] )

Then move Color-dSprites datset (eg. cdsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz) npz file to the folder (./data/dsprites-dataset/)

Run the code with following argument:

python -W ignore main.py --seed 7 --z_dim 16 --r_dim 10 --batch_size 64 --optim rmsprop --dataset cdsprites --viz True --viz_port 8097 --z_bias 0 --viz_name dsprites --beta 0.071 --alpha 1 --gamma 1 --G_lr 5e-5 --D_lr 1e-6 --max_iter 500000 --logiter 500 --ptriter 2500 --ckptiter 2500 --load_ckpt -1 --init_type normal --save_img True
  • Color-dSprite dataset for Kim's disentanglement score evaluation : "./data/img4eval_cdsprites.7z".

You first need to unzip "imgs4eval_cdsprites.7z" file using 7za. Please locate all the unzip files in "/data/imgs4eval_cdsprites/*" folder.

run the evaluation on Kim's disentanglment metric, type

python evaluator.py --dset_dir data/imgs4eval_cdsprites --logiter 5000 --lastiter 500000 --name main

After all the evaluations for each checkpoint is done, you can see the overall disentanglement scores with the "checkout_scores.ipynb" (jupyter notebook) file. or you can just type

import os
import torch
torch.load('checkpoint/main/result.metric')

to see the scores in the python console. Then move Color-dSprites datset (eg. cdsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz) to ./data/dsprites-dataset/

Reproducing CelebA experiment

  • CelebA dataset : please download CelebA dataset and prepare 64x64 center cropped image files into the folder (./data/CelebA/cropped_64)

Then run the code with following argument:

python -W ignore main2.py --seed 0 --z_dim 64 --r_dim 15 --batch_size 64 --optim rmsprop --dataset celeba --viz_port 8097 --z_bias 0 --r_weight 0 --viz_name celeba --beta 0.35 --alpha 1 --gamma 1 --max_iter 1000000 --G_lr 5e-5 --D_lr 2e-6 --R_lr 5e-5 --ckpt_dir checkpoint --output_dir output --logiter 500 --ptriter 20000 --ckptiter 20000 --ngf 64 --ndf 64 --label_smoothing True --instance_noise_start 0.5 --instance_noise_end 0.01 --init_type orthogonal

Reproducing 3dChairs experiment

  • 3dChairs dataset : please download 3dChairs dataset and move image files into the folder (./data/3DChairs/images)
python -W ignore main2.py --seed 0 --z_dim 64 --r_dim 10 --batch_size 64 --optim rmsprop --dataset 3dchairs --viz_port 8097 --z_bias 0 --r_weight 0 --viz_name 3dchairs --beta 0.325 --alpha 1 --gamma 1 --max_iter 700000 --G_lr 5e-5 --D_lr 2e-6 --R_lr 5e-5 --ckpt_dir checkpoint --output_dir output --logiter 500 --ptriter 20000 --ckptiter 20000 --ngf 32 --ndf 32 --label_smoothing True --instance_noise_start 0.5 --instance_noise_end 0.01 --init_type orthogonal

Citing IB-GAN

If you like this work and end up using IB-GAN for your reseach, please cite our paper with the bibtex code:

@inproceedings{jeon2021ib, title={IB-GAN: Disengangled Representation Learning with Information Bottleneck Generative Adversarial Networks}, author={Jeon, Insu and Lee, Wonkwang and Pyeon, Myeongjang and Kim, Gunhee}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={35}, number={9}, pages={7926--7934}, year={2021} }

The disclosure and use of the currently published code is limited to research purposes only.

Owner
Insu Jeon
Stay hungry, stay foolish.
Insu Jeon
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022