This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

Related tags

Deep LearningIB-GAN
Overview

The PyTorch implementation of IB-GAN model of AAAI 2021

This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks) in AAAI 2021.

You can reproduce the experiment on dSprite (Color-dSprite, 3DChairs, and CelebA) dataset with the this code.

Current implementation is based on python==1.4.0. Please refer environments.yml for the environment settings.

Please refer to the Technical appendix page for more detailed information of hypter parameter settings for each experiment.

Contents

  • Main code for dsprites (and cdsprite): "main.py"

  • IB-GAN model for dsprites (and cdsprite): "./model/model.py"

  • Disentanglement Evaluation codes for dsprites (and cdsprite): "evaluator.py", "checkout_scores.ipynb"

  • Main code for 3d Chairs (and CelebA): "main2.py"

  • IB-GAN model for dsprites (and cdsprite): "./model/model2.py"

Visdom for visualization

Since the defulat visidom option for main.py is True, you first want to run Visidom server berfore excuting the main program by typing

python -m visdom.server -p 8097

Then you can observe the visualization of the "convergence plot and generated samples" for each training iterations from

localhost:8097

Reproducing dSprite experiment

  • dSprite dataset : "./data/dsprites-dataset/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz"

You can reproduce dSprite expreiment by typing:

python -W ignore main.py --seed 7 --z_dim 16 --r_dim 10 --batch_size 64 --optim rmsprop --dataset dsprites --viz True --viz_port 8097 --z_bias 0 --viz_name dsprites --beta 0.141 --alpha 1 --gamma 1 --G_lr 5e-5 --D_lr 1e-6 --max_iter 150000 --logiter 500 --ptriter 2500 --ckptiter 2500 --load_ckpt -1 --init_type normal --save_img True

Note, all the default parameter settings are optimally set up for the dSprite experiment (in the "main.py" file). For more details on the parameter settings for other datasets, please refer to the Technical appendix.

  • dSprite dataset for Kim's disentanglement score evaluation : Evauation file is currently not available. (will be update soon) The evaulation process and code is same as cdsprite experiment.

Reproducing Color-dSprite expreiemnt

  • Color-dSprite dataset : Color dSprite Dataset is currently not available.

But you can create Colored-dSprites dataset by changing RGB channel of the original dsprites dataset.

Each channel of RGB takes 8 discrete values as : [0.00, 36.42, 72.85, 109.28, 145.71, 182.14, 218.57, 255.00] )

Then move Color-dSprites datset (eg. cdsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz) npz file to the folder (./data/dsprites-dataset/)

Run the code with following argument:

python -W ignore main.py --seed 7 --z_dim 16 --r_dim 10 --batch_size 64 --optim rmsprop --dataset cdsprites --viz True --viz_port 8097 --z_bias 0 --viz_name dsprites --beta 0.071 --alpha 1 --gamma 1 --G_lr 5e-5 --D_lr 1e-6 --max_iter 500000 --logiter 500 --ptriter 2500 --ckptiter 2500 --load_ckpt -1 --init_type normal --save_img True
  • Color-dSprite dataset for Kim's disentanglement score evaluation : "./data/img4eval_cdsprites.7z".

You first need to unzip "imgs4eval_cdsprites.7z" file using 7za. Please locate all the unzip files in "/data/imgs4eval_cdsprites/*" folder.

run the evaluation on Kim's disentanglment metric, type

python evaluator.py --dset_dir data/imgs4eval_cdsprites --logiter 5000 --lastiter 500000 --name main

After all the evaluations for each checkpoint is done, you can see the overall disentanglement scores with the "checkout_scores.ipynb" (jupyter notebook) file. or you can just type

import os
import torch
torch.load('checkpoint/main/result.metric')

to see the scores in the python console. Then move Color-dSprites datset (eg. cdsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz) to ./data/dsprites-dataset/

Reproducing CelebA experiment

  • CelebA dataset : please download CelebA dataset and prepare 64x64 center cropped image files into the folder (./data/CelebA/cropped_64)

Then run the code with following argument:

python -W ignore main2.py --seed 0 --z_dim 64 --r_dim 15 --batch_size 64 --optim rmsprop --dataset celeba --viz_port 8097 --z_bias 0 --r_weight 0 --viz_name celeba --beta 0.35 --alpha 1 --gamma 1 --max_iter 1000000 --G_lr 5e-5 --D_lr 2e-6 --R_lr 5e-5 --ckpt_dir checkpoint --output_dir output --logiter 500 --ptriter 20000 --ckptiter 20000 --ngf 64 --ndf 64 --label_smoothing True --instance_noise_start 0.5 --instance_noise_end 0.01 --init_type orthogonal

Reproducing 3dChairs experiment

  • 3dChairs dataset : please download 3dChairs dataset and move image files into the folder (./data/3DChairs/images)
python -W ignore main2.py --seed 0 --z_dim 64 --r_dim 10 --batch_size 64 --optim rmsprop --dataset 3dchairs --viz_port 8097 --z_bias 0 --r_weight 0 --viz_name 3dchairs --beta 0.325 --alpha 1 --gamma 1 --max_iter 700000 --G_lr 5e-5 --D_lr 2e-6 --R_lr 5e-5 --ckpt_dir checkpoint --output_dir output --logiter 500 --ptriter 20000 --ckptiter 20000 --ngf 32 --ndf 32 --label_smoothing True --instance_noise_start 0.5 --instance_noise_end 0.01 --init_type orthogonal

Citing IB-GAN

If you like this work and end up using IB-GAN for your reseach, please cite our paper with the bibtex code:

@inproceedings{jeon2021ib, title={IB-GAN: Disengangled Representation Learning with Information Bottleneck Generative Adversarial Networks}, author={Jeon, Insu and Lee, Wonkwang and Pyeon, Myeongjang and Kim, Gunhee}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={35}, number={9}, pages={7926--7934}, year={2021} }

The disclosure and use of the currently published code is limited to research purposes only.

Owner
Insu Jeon
Stay hungry, stay foolish.
Insu Jeon
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022