This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

Related tags

Deep LearningIB-GAN
Overview

The PyTorch implementation of IB-GAN model of AAAI 2021

This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks) in AAAI 2021.

You can reproduce the experiment on dSprite (Color-dSprite, 3DChairs, and CelebA) dataset with the this code.

Current implementation is based on python==1.4.0. Please refer environments.yml for the environment settings.

Please refer to the Technical appendix page for more detailed information of hypter parameter settings for each experiment.

Contents

  • Main code for dsprites (and cdsprite): "main.py"

  • IB-GAN model for dsprites (and cdsprite): "./model/model.py"

  • Disentanglement Evaluation codes for dsprites (and cdsprite): "evaluator.py", "checkout_scores.ipynb"

  • Main code for 3d Chairs (and CelebA): "main2.py"

  • IB-GAN model for dsprites (and cdsprite): "./model/model2.py"

Visdom for visualization

Since the defulat visidom option for main.py is True, you first want to run Visidom server berfore excuting the main program by typing

python -m visdom.server -p 8097

Then you can observe the visualization of the "convergence plot and generated samples" for each training iterations from

localhost:8097

Reproducing dSprite experiment

  • dSprite dataset : "./data/dsprites-dataset/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz"

You can reproduce dSprite expreiment by typing:

python -W ignore main.py --seed 7 --z_dim 16 --r_dim 10 --batch_size 64 --optim rmsprop --dataset dsprites --viz True --viz_port 8097 --z_bias 0 --viz_name dsprites --beta 0.141 --alpha 1 --gamma 1 --G_lr 5e-5 --D_lr 1e-6 --max_iter 150000 --logiter 500 --ptriter 2500 --ckptiter 2500 --load_ckpt -1 --init_type normal --save_img True

Note, all the default parameter settings are optimally set up for the dSprite experiment (in the "main.py" file). For more details on the parameter settings for other datasets, please refer to the Technical appendix.

  • dSprite dataset for Kim's disentanglement score evaluation : Evauation file is currently not available. (will be update soon) The evaulation process and code is same as cdsprite experiment.

Reproducing Color-dSprite expreiemnt

  • Color-dSprite dataset : Color dSprite Dataset is currently not available.

But you can create Colored-dSprites dataset by changing RGB channel of the original dsprites dataset.

Each channel of RGB takes 8 discrete values as : [0.00, 36.42, 72.85, 109.28, 145.71, 182.14, 218.57, 255.00] )

Then move Color-dSprites datset (eg. cdsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz) npz file to the folder (./data/dsprites-dataset/)

Run the code with following argument:

python -W ignore main.py --seed 7 --z_dim 16 --r_dim 10 --batch_size 64 --optim rmsprop --dataset cdsprites --viz True --viz_port 8097 --z_bias 0 --viz_name dsprites --beta 0.071 --alpha 1 --gamma 1 --G_lr 5e-5 --D_lr 1e-6 --max_iter 500000 --logiter 500 --ptriter 2500 --ckptiter 2500 --load_ckpt -1 --init_type normal --save_img True
  • Color-dSprite dataset for Kim's disentanglement score evaluation : "./data/img4eval_cdsprites.7z".

You first need to unzip "imgs4eval_cdsprites.7z" file using 7za. Please locate all the unzip files in "/data/imgs4eval_cdsprites/*" folder.

run the evaluation on Kim's disentanglment metric, type

python evaluator.py --dset_dir data/imgs4eval_cdsprites --logiter 5000 --lastiter 500000 --name main

After all the evaluations for each checkpoint is done, you can see the overall disentanglement scores with the "checkout_scores.ipynb" (jupyter notebook) file. or you can just type

import os
import torch
torch.load('checkpoint/main/result.metric')

to see the scores in the python console. Then move Color-dSprites datset (eg. cdsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz) to ./data/dsprites-dataset/

Reproducing CelebA experiment

  • CelebA dataset : please download CelebA dataset and prepare 64x64 center cropped image files into the folder (./data/CelebA/cropped_64)

Then run the code with following argument:

python -W ignore main2.py --seed 0 --z_dim 64 --r_dim 15 --batch_size 64 --optim rmsprop --dataset celeba --viz_port 8097 --z_bias 0 --r_weight 0 --viz_name celeba --beta 0.35 --alpha 1 --gamma 1 --max_iter 1000000 --G_lr 5e-5 --D_lr 2e-6 --R_lr 5e-5 --ckpt_dir checkpoint --output_dir output --logiter 500 --ptriter 20000 --ckptiter 20000 --ngf 64 --ndf 64 --label_smoothing True --instance_noise_start 0.5 --instance_noise_end 0.01 --init_type orthogonal

Reproducing 3dChairs experiment

  • 3dChairs dataset : please download 3dChairs dataset and move image files into the folder (./data/3DChairs/images)
python -W ignore main2.py --seed 0 --z_dim 64 --r_dim 10 --batch_size 64 --optim rmsprop --dataset 3dchairs --viz_port 8097 --z_bias 0 --r_weight 0 --viz_name 3dchairs --beta 0.325 --alpha 1 --gamma 1 --max_iter 700000 --G_lr 5e-5 --D_lr 2e-6 --R_lr 5e-5 --ckpt_dir checkpoint --output_dir output --logiter 500 --ptriter 20000 --ckptiter 20000 --ngf 32 --ndf 32 --label_smoothing True --instance_noise_start 0.5 --instance_noise_end 0.01 --init_type orthogonal

Citing IB-GAN

If you like this work and end up using IB-GAN for your reseach, please cite our paper with the bibtex code:

@inproceedings{jeon2021ib, title={IB-GAN: Disengangled Representation Learning with Information Bottleneck Generative Adversarial Networks}, author={Jeon, Insu and Lee, Wonkwang and Pyeon, Myeongjang and Kim, Gunhee}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={35}, number={9}, pages={7926--7934}, year={2021} }

The disclosure and use of the currently published code is limited to research purposes only.

Owner
Insu Jeon
Stay hungry, stay foolish.
Insu Jeon
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022