Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Overview

Targeted Trojan-Horse Attacks on Language-based Image Retrieval

Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval. This project implements TTH for CLIP and CLIP-flickr on Flickr30k.

image-20220422124016610

Environment

We used Anaconda to setup a deep learning workspace that supports PyTorch. Run the following script to install all the required packages.

conda create -n tth python==3.8
conda activate tth
git clone https://github.com/fly-dragon211/tth.git
cd tth
pip install -r requirements.txt

Data prepare

Dataset

We put the dataset files on ~/VisualSearch.

mkdir ~/VisualSearch
unzip -q "TTH_VisualSearch.zip" -d "~/VisualSearch/"

Readers need to download Flickr30k dataset and move the image files to ~/VisualSearch/flickr30k/flickr30k-images/. The Flickr30k is available on official website or Baidu Yun (https://pan.baidu.com/s/1r0RVUwctJsI0iNuVXHQ6kA 提取码:hrf3).

CLIP-flickr and CLIP-coco models

We provide the CLIP model which finetuned on Flickr30k and MSCOCO:

Baidu Yun: https://pan.baidu.com/s/1n8Sa7Fr9-G9KbZ3-FxS1_g?pwd=sbsv 提取码: sbsv

Readers can move the model files to ~/VisualSearch/flickr30k

TTH attack

CLIP

 python TTH_attack.py \
 --device 0 flickr30ktest_add_ad None flickr30ktrain/flickr30kval/test \
 --attack_trainData flickr30ktrain --config_name TTH.CLIPEnd2End_adjust \
 --parm_adjust_config 0_1_1 --rootpath ~/VisualSearch \
 --batch_size 256 --query_sets flickr30ktest_add_ad.caption.txt

R10 of truly relevant images and novel images w.r.t. specific queries. LBIR setup: CLIP + Flickr30ktest. Adversarial patches are learned with Flickr30ktrain as training data. The clear drop of R10 for truley relevant images and the clear increase of R10 for novel images show the success of the proposed method for making TTH attacks

image-20220422125243619

CLIP-flickr

 CLIP_flickr="~/VisualSearch/flickr30k/CLIP-flickr.tar"
 
 python TTH_attack.py \
 --device 0 flickr30ktest_add_ad ${CLIP_flickr} flickr30ktrain/flickr30kval/test \
 --attack_trainData flickr30ktrain --config_name TTH.CLIPEnd2End_adjust \
 --parm_adjust_config 0_1_0 --rootpath ~/VisualSearch \
 --batch_size 256 --query_sets flickr30ktest_add_ad.caption.txt

R10 of truly relevant images and novel images w.r.t. specific queries. LBIR setup: CLIP-flickr + Flickr30ktest.

image-20220422125609322

References

@article{hu2022targeted,
  title={Targeted Trojan-Horse Attacks on Language-based Image Retrieval},
  author={Hu, Fan and Chen, Aozhu and Li, Xirong},
  journal={arXiv},
  year={2022}
}

Contact

If you enounter any issue when running the code, please feel free to reach us either by creating a new issue in the github or by emailing

Owner
fine
I am an ant who believes the miracle. Try as you can, come on!
fine
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022