Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Overview

causal-bald

| Abstract | Installation | Example | Citation | Reproducing Results DUE

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Evolution of CATE function with Causal BALD acquisition strategy

Abstract

Estimating personalized treatment effects from high-dimensional observational data is essential in situations where experimental designs are infeasible, unethical or expensive. Existing approaches rely on fitting deep models on outcomes observed for treated and control populations, but when measuring the outcome for an individual is costly (e.g. biopsy) a sample efficient strategy for acquiring outcomes is required. Deep Bayesian active learning provides a framework for efficient data acquisition by selecting points with high uncertainty. However, naive application of existing methods selects training data that is biased toward regions where the treatment effect cannot be identified because there is non-overlapping support between the treated and control populations. To maximize sample efficiency for learning personalized treatment effects, we introduce new acquisition functions grounded in information theory that bias data acquisition towards regions where overlap is satisfied, by combining insights from deep Bayesian active learning and causal inference. We demonstrate the performance of the proposed acquisition strategies on synthetic and semi-synthetic datasets IHDP and CMNIST and their extensions which aim to simulate common dataset biases and pathologies.

Installation

$ git clone [email protected]:[anon]/causal-bald.git
$ cd causal-bald
$ conda env create -f environment.yml
$ conda activate causal-bald

[Optional] For developer mode

$ pip install -e .

Example

Active learning loop

First run using random acquisition:

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function random \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Now run using $\mu\rho\textrm{-BALD}$ acquisition.

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function mu-rho \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Evaluation

Evaluate PEHE at each acquisition step

causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe
causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe

Plot results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m random

Plotting convergence of acquisitions. Comparing random and mu-rho for example code

Citation

If you find this code helpful for your work, please cite our paper Paper as

@article{jesson2021causal,
  title={Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data},
  author={Jesson, Andrew and Tigas, Panagiotis and van Amersfoort, Joost and Kirsch, Andreas and Shalit, Uri and Gal, Yarin},
  journal={Advances in Neural Information Processing Systems},
  volume={35},
  year={2021}
}

Reprodcuing Results Due

IHDP

$\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-tau_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Random

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-sundin_temp-1.0/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

Synthetic

Synthetic dataset

Synthetic: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/ihdp pehe

Synthetic: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-tau_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Random

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-random_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-sundin_temp-1.0/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/synthetic \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

CMNIST

CMNIST dataset

CMNIST: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/ihdp pehe

CMNIST: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-tau_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Random

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-random_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-sundin_temp-1.0/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/cmnist \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin
Owner
OATML
Oxford Applied and Theoretical Machine Learning Group
OATML
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022