CLIPImageClassifier wraps clip image model from transformers

Overview

CLIPImageClassifier

CLIPImageClassifier wraps clip image model from transformers.

CLIPImageClassifier is initialized with the argument classes, these are the texts that we want to classify an image to one of them The executor receives Documents with uri attribute. Each Document's uri represent the path to an image. The executor will read the image and classify it to one of the classes.

The result will be saved inside a new tag called class within the original document. The class tag is a dictionary that contains two things:

  • label: the chosen class from classes.
  • score: the confidence score in the chosen class given by the model.

Usage

Use the prebuilt images from Jina Hub in your Python code, add it to your Flow and classify your images according to chosen classes:

from jina import Flow
classes = ['this is a cat','this is a dog','this is a person']
f = Flow().add(
    uses='jinahub+docker://CLIPImageClassifier',
    uses_with={'classes':classes}
    )
docs = DocumentArray()
doc = Document(uri='/your/image/path')
docs.append(doc)

with f:
    f.post(on='/classify', inputs=docs, on_done=lambda resp: print(resp.docs[0].tags['class']['label']))

Returns

Document with class tag. This class tag which is a dict.It contains label which is an str and a float confidence score for the image.

GPU Usage

This executor also offers a GPU version. To use it, make sure to pass 'device'='cuda', as the initialization parameter, and gpus='all' when adding the containerized Executor to the Flow. See the Executor on GPU section of Jina documentation for more details.

Here's how you would modify the example above to use a GPU:

from jina import Flow

classes = ['this is a cat','this is a dog','this is a person']	
f = Flow().add(
    uses='jinahub+docker://CLIPImageClassifier',
    uses_with={
    'classes':classes,
    'device':'cuda',
    'gpus':'all'
    }
    )
docs = DocumentArray()
doc = Document(uri='/your/image/path')
docs.append(doc)

with f:
    f.post(on='/classify', inputs=docs, on_done=lambda resp: print(resp.docs[0].tags['class']['label']))

Reference

CLIP Image model

You might also like...
CLIP+FFT text-to-image
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

 Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Comments
  • CLIPImageClassifier error

    CLIPImageClassifier error

    I tried to run the following flow on "jinahub+sandbox" but I got the following error could you please share your insight with me? I am running the code from my Jupyter notebook.

    import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) from jina import Flow classes = ['this is a cat','this is a dog','this is a person'] doc = Document(uri='image/dog.jpg') docs = DocumentArray() docs.append(doc) f = Flow().add( uses='jinahub://CLIPImageClassifier',name="classifier", uses_with={'classes':classes})

    with f: f.post(on='/classify', inputs=docs, on_done=lambda resp: print(resp.docs[0].tags['class']['label']))

    -----------------------error------------------ PkgResourcesDeprecationWarning: 1.1build1 is an invalid version and will not be supported in a future release (raised from /home/ubuntu/pyenv/lib/python3.10/site-packages/pkg_resources/init.py:116) PkgResourcesDeprecationWarning: 0.1.43ubuntu1 is an invalid version and will not be supported in a future release (raised from /home/ubuntu/pyenv/lib/python3.10/site-packages/pkg_resources/init.py:116) UserWarning: VersionConflict(torchvision 0.12.0+cpu (/usr/local/lib/python3.10/dist-packages), Requirement.parse('torchvision==0.10.0')) (raised from /home/ubuntu/pyenv/lib/python3.10/site-packages/jina/hubble/helper.py:483) ftfy or spacy is not installed using BERT BasicTokenizer instead of ftfy. ╭────── 🎉 Flow is ready to serve! ──────╮ │ 🔗 Protocol GRPC │ │ 🏠 Local 0.0.0.0:55600 │ │ 🔒 Private 172.31.17.247:55600 │ │ 🌍 Public 34.221.179.218:55600 │ ╰────────────────────────────────────────╯ ERROR classifier/[email protected] AttributeError("'DocumentArrayInMemory' [07/06/22 16:34:35] object has no attribute 'get_attributes'")
    add "--quiet-error" to suppress the exception details
    ╭────────────── Traceback (most recent call last) ───────────────╮
    │ /home/ubuntu/pyenv/lib/python3.10/site-packages/jina/serve/ru… │
    │ in process_data │
    │ │
    │ 162 │ │ │ │ if self.logger.debug_enabled: │
    │ 163 │ │ │ │ │ self._log_data_request(requests[0]) │
    │ 164 │ │ │ │ │
    │ ❱ 165 │ │ │ │ return await self._data_request_handler. │
    │ 166 │ │ │ except (RuntimeError, Exception) as ex: │
    │ 167 │ │ │ │ self.logger.error( │
    │ 168 │ │ │ │ │ f'{ex!r}' │
    │ │
    │ /home/ubuntu/pyenv/lib/python3.10/site-packages/jina/serve/ru… │
    │ in handle │
    │ │
    │ 147 │ │ ) │
    │ 148 │ │ │
    │ 149 │ │ # executor logic │
    │ ❱ 150 │ │ return_data = await self._executor.acall( │
    │ 151 │ │ │ req_endpoint=requests[0].header.exec_endpoin │
    │ 152 │ │ │ docs=docs, │
    │ 153 │ │ │ parameters=params, │
    │ │
    │ /home/ubuntu/pyenv/lib/python3.10/site-packages/jina/serve/ex… │
    │ in acall
    │ │
    │ 271 │ │ if req_endpoint in self.requests: │
    │ 272 │ │ │ return await self.acall_endpoint(req_end │
    │ 273 │ │ elif default_endpoint in self.requests: │
    │ ❱ 274 │ │ │ return await self.acall_endpoint(__defau │
    │ 275 │ │
    │ 276 │ async def acall_endpoint(self, req_endpoint, **k │
    │ 277 │ │ func = self.requests[req_endpoint] │
    │ │
    │ /home/ubuntu/pyenv/lib/python3.10/site-packages/jina/serve/ex… │
    │ in acall_endpoint
    │ │
    │ 292 │ │ │ if iscoroutinefunction(func): │
    │ 293 │ │ │ │ return await func(self, **kwargs) │
    │ 294 │ │ │ else: │
    │ ❱ 295 │ │ │ │ return func(self, **kwargs) │
    │ 296 │ │
    │ 297 │ @property │
    │ 298 │ def workspace(self) -> Optional[str]: │
    │ │
    │ /home/ubuntu/pyenv/lib/python3.10/site-packages/jina/serve/ex… │
    │ in arg_wrapper │
    │ │
    │ 177 │ │ │ │ def arg_wrapper( │
    │ 178 │ │ │ │ │ executor_instance, *args, **kwargs │
    │ 179 │ │ │ │ ): # we need to get the summary from th │
    │ the self │
    │ ❱ 180 │ │ │ │ │ return fn(executor_instance, *args, │
    │ 181 │ │ │ │ │
    │ 182 │ │ │ │ self.fn = arg_wrapper │
    │ 183 │
    │ │
    │ /home/ubuntu/.jina/hub-package/9k3zudzu/clip_image_classifier… │
    │ in classify │
    │ │
    │ 56 │ │ for docs_batch in docs.traverse_flat( │
    │ 57 │ │ │ parameters.get('traversal_paths', self.traver │
    │ 58 │ │ ).batch(batch_size=parameters.get('batch_size', s │
    │ ❱ 59 │ │ │ image_batch = docs_batch.get_attributes('blob │
    │ 60 │ │ │ with torch.inference_mode(): │
    │ 61 │ │ │ │ input = self._generate_input_features(cla │
    │ 62 │ │ │ │ outputs = self.model(**input) │
    ╰────────────────────────────────────────────────────────────────╯
    AttributeError: 'DocumentArrayInMemory' object has no attribute
    'get_attributes'
    Exception in thread Thread-107: Traceback (most recent call last): File "/home/ubuntu/pyenv/lib/python3.10/site-packages/jina/clients/base/grpc.py", line 86, in _get_results async for resp in stub.Call( File "/home/ubuntu/pyenv/lib/python3.10/site-packages/grpc/aio/_call.py", line 326, in _fetch_stream_responses await self._raise_for_status() File "/home/ubuntu/pyenv/lib/python3.10/site-packages/grpc/aio/_call.py", line 236, in _raise_for_status raise _create_rpc_error(await self.initial_metadata(), await grpc.aio._call.AioRpcError: <AioRpcError of RPC that terminated with: status = StatusCode.UNKNOWN details = "Unexpected <class 'grpc.aio._call.AioRpcError'>: <AioRpcError of RPC that terminated with: status = StatusCode.UNKNOWN details = "Unexpected <class 'TypeError'>: format_exception() got an unexpected keyword argument 'etype'" debug_error_string = "{"created":"@1657125275.618452649","description":"Error received from peer ipv4:0.0.0.0:58903","file":"src/core/lib/surface/call.cc","file_line":952,"grpc_message":"Unexpected <class 'TypeError'>: format_exception() got an unexpected keyword argument 'etype'","grpc_status":2}"

    " debug_error_string = "{"created":"@1657125275.619606817","description":"Error received from peer ipv4:0.0.0.0:55600","file":"src/core/lib/surface/call.cc","file_line":952,"grpc_message":"Unexpected <class 'grpc.aio._call.AioRpcError'>: <AioRpcError of RPC that terminated with:\n\tstatus = StatusCode.UNKNOWN\n\tdetails = "Unexpected <class 'TypeError'>: format_exception() got an unexpected keyword argument 'etype'"\n\tdebug_error_string = "{"created":"@1657125275.618452649","description":"Error received from peer ipv4:0.0.0.0:58903","file":"src/core/lib/surface/call.cc","file_line":952,"grpc_message":"Unexpected <class 'TypeError'>: format_exception() got an unexpected keyword argument 'etype'","grpc_status":2}"\n>","grpc_status":2}"

    The above exception was the direct cause of the following exception:

    Traceback (most recent call last): File "/usr/lib/python3.10/threading.py", line 1009, in _bootstrap_inner self.run() File "/home/ubuntu/pyenv/lib/python3.10/site-packages/jina/helper.py", line 1292, in run self.result = asyncio.run(func(*args, **kwargs)) File "/usr/lib/python3.10/asyncio/runners.py", line 44, in run return loop.run_until_complete(main) File "/usr/lib/python3.10/asyncio/base_events.py", line 646, in run_until_complete return future.result() File "/home/ubuntu/pyenv/lib/python3.10/site-packages/jina/clients/mixin.py", line 164, in _get_results async for resp in c._get_results(*args, **kwargs): File "/home/ubuntu/pyenv/lib/python3.10/site-packages/jina/clients/base/grpc.py", line 155, in _get_results raise e File "/home/ubuntu/pyenv/lib/python3.10/site-packages/jina/clients/base/grpc.py", line 135, in _get_results raise BadClient(msg) from err jina.excepts.BadClient: gRPC error: StatusCode.UNKNOWN Unexpected <class 'grpc.aio._call.AioRpcError'>: <AioRpcError of RPC that terminated with: status = StatusCode.UNKNOWN details = "Unexpected <class 'TypeError'>: format_exception() got an unexpected keyword argument 'etype'" debug_error_string = "{"created":"@1657125275.618452649","description":"Error received from peer ipv4:0.0.0.0:58903","file":"src/core/lib/surface/call.cc","file_line":952,"grpc_message":"Unexpected <class 'TypeError'>: format_exception() got an unexpected keyword argument 'etype'","grpc_status":2}"


    AttributeError Traceback (most recent call last) File ~/pyenv/lib/python3.10/site-packages/jina/helper.py:1307, in run_async(func, *args, **kwargs) 1306 try: -> 1307 return thread.result 1308 except AttributeError:

    AttributeError: '_RunThread' object has no attribute 'result'

    During handling of the above exception, another exception occurred:

    BadClient Traceback (most recent call last) Input In [15], in <cell line: 12>() 8 f = Flow().add( 9 uses='jinahub://CLIPImageClassifier',name="classifier", 10 uses_with={'classes':classes}) 12 with f: ---> 13 f.post(on='/classify', inputs=docs, on_done=lambda resp: print(resp.docs[0].tags['class']['label']))

    File ~/pyenv/lib/python3.10/site-packages/jina/clients/mixin.py:173, in PostMixin.post(self, on, inputs, on_done, on_error, on_always, parameters, target_executor, request_size, show_progress, continue_on_error, return_responses, **kwargs) 170 if return_results: 171 return result --> 173 return run_async( 174 _get_results, 175 inputs=inputs, 176 on_done=on_done, 177 on_error=on_error, 178 on_always=on_always, 179 exec_endpoint=on, 180 target_executor=target_executor, 181 parameters=parameters, 182 request_size=request_size, 183 **kwargs, 184 )

    File ~/pyenv/lib/python3.10/site-packages/jina/helper.py:1311, in run_async(func, *args, **kwargs) 1308 except AttributeError: 1309 from jina.excepts import BadClient -> 1311 raise BadClient( 1312 'something wrong when running the eventloop, result can not be retrieved' 1313 ) 1314 else: 1316 raise RuntimeError( 1317 'you have an eventloop running but not using Jupyter/ipython, ' 1318 'this may mean you are using Jina with other integration? if so, then you ' 1319 'may want to use Client/Flow(asyncio=True). If not, then ' 1320 'please report this issue here: https://github.com/jina-ai/jina' 1321 )

    BadClient: something wrong when running the eventloop, result can not be retrieved

    opened by sk-haghighi 4
Releases(v0.2)
Owner
Jina AI
A Neural Search Company. We provide the cloud-native neural search solution powered by state-of-the-art AI technology.
Jina AI
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022