Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

Related tags

Deep Learninglila
Overview

LILA

LILA: Language-Informed Latent Actions

Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assistive teleoperation.

This code bundles code that can be deployed on a Franka Emika Panda Arm, including utilities for processing collected demonstrations (you can find our actual demo data in the data/ directory!), training various LILA and Imitation Learning models, and running live studies.


Quickstart

Assumes lila is the current working directory! This repository also comes with out-of-the-box linting and strict pre-commit checking... should you wish to turn off this functionality you can omit the pre-commit install lines below. If you do choose to use these features, you can run make autoformat to automatically clean code, and make check to identify any violations.

Repository Structure

High-level overview of repository file-tree:

  • conf - Quinine Configurations (.yaml) for various runs (used in lieu of argparse or typed-argument-parser)
  • environments - Serialized Conda Environments for running on CPU. Other architectures/CUDA toolkit environments can be added here as necessary.
  • robot/ - Core libfranka robot control code -- simple joint velocity controll w/ Gripper control.
  • src/ - Source Code - has all utilities for preprocessing, Lightning Model definitions, utilities.
    • preprocessing/ - Preprocessing Code for creating Torch Datasets for Training LILA/Imitation Models.
    • models/ - Lightning Modules for LILA-FiLM and Imitation-FiLM Architectures.
  • train.py - Top-Level (main) entry point to repository, for training and evaluating models. Run this first, pointing it at the appropriate configuration in conf/!.
  • Makefile - Top-level Makefile (by default, supports conda serialization, and linting). Expand to your needs.
  • .flake8 - Flake8 Configuration File (Sane Defaults).
  • .pre-commit-config.yaml - Pre-Commit Configuration File (Sane Defaults).
  • pyproject.toml - Black and isort Configuration File (Sane Defaults).+ README.md - You are here!
  • README.md - You are here!
  • LICENSE - By default, research code is made available under the MIT License.

Local Development - CPU (Mac OS & Linux)

Note: Assumes that conda (Miniconda or Anaconda are both fine) is installed and on your path. Use the -cpu environment file.

conda env create -f environments/environment-cpu.yaml
conda activate lila
pre-commit install

GPU Development - Linux w/ CUDA 11.0

conda env create -f environments/environment-gpu.yaml  # Choose CUDA Kernel based on Hardware - by default used 11.0!
conda activate lila
pre-commit install

Note: This codebase should work naively for all PyTorch > 1.7, and any CUDA version; if you run into trouble building this repository, please file an issue!


Training LILA or Imitation Models

To train models using the already collected demonstrations.

# LILA
python train.py --config conf/lila-config.yaml

# No-Language Latent Actions
python train.py --config conf/no-lang-config.yaml

# Imitatation Learning (Behavioral Cloning w/ DART-style Augmentation)
python train.py --config conf/imitation-config.yaml

This will dump models to runs/{lila-final, no-lang-final, imitation-final}/. These paths are hard-coded in the respective teleoperation/execution files below; if you change these paths, be sure to change the below files as well!

Teleoperating with LILA or End-Effector Control

First, make sure to add the custom Velocity Controller written for the Franka Emika Panda Robot Arm (written using Libfranka) to ~/libfranka/examples on your robot control box. The controller can be found in robot/libfranka/lilaVelocityController.cpp.

Then, make sure to update the path of the model trained in the previous step (for LILA) in teleoperate.py. Finally, you can drop into controlling the robot with a LILA model (and Joystick - make sure it's plugged in!) with:

# LILA Control
python teleoperate.py

# For No-Language Control, just change the arch!
python teleoperate.py --arch no-lang

# Pure End-Effector Control is also implemented by Default
python teleoperate.py --arch endeff

Running Imitation Learning

Add the Velocity Controller as described above. Then, make sure to update the path to the trained model in imitate.py and run the following:

python imitate.py

Collecting Kinesthetic Demonstrations

Each lab (and corresponding robot) is built with a different stack, and different preferred ways of recording Kinesthetic demonstrations. We have a rudimentary script record.py that shows how we do this using sockets, and the default libfranka readState.cpp built-in script. This script dumps demonstrations that can be immediately used to train latent action models.

Start-Up from Scratch

In case the above conda environment loading does not work for you, here are the concrete package dependencies required to run LILA:

conda create --name lila python=3.8
conda activate lila
conda install pytorch torchvision torchaudio -c pytorch
conda install ipython jupyter
conda install pytorch-lightning -c conda-forge

pip install black flake8 isort matplotlib pre-commit pygame quinine transformers typed-argument-parser wandb
Owner
Sidd Karamcheti
PhD Student at Stanford & Research Intern at Hugging Face 🤗
Sidd Karamcheti
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022