Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

Related tags

Deep Learninglila
Overview

LILA

LILA: Language-Informed Latent Actions

Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assistive teleoperation.

This code bundles code that can be deployed on a Franka Emika Panda Arm, including utilities for processing collected demonstrations (you can find our actual demo data in the data/ directory!), training various LILA and Imitation Learning models, and running live studies.


Quickstart

Assumes lila is the current working directory! This repository also comes with out-of-the-box linting and strict pre-commit checking... should you wish to turn off this functionality you can omit the pre-commit install lines below. If you do choose to use these features, you can run make autoformat to automatically clean code, and make check to identify any violations.

Repository Structure

High-level overview of repository file-tree:

  • conf - Quinine Configurations (.yaml) for various runs (used in lieu of argparse or typed-argument-parser)
  • environments - Serialized Conda Environments for running on CPU. Other architectures/CUDA toolkit environments can be added here as necessary.
  • robot/ - Core libfranka robot control code -- simple joint velocity controll w/ Gripper control.
  • src/ - Source Code - has all utilities for preprocessing, Lightning Model definitions, utilities.
    • preprocessing/ - Preprocessing Code for creating Torch Datasets for Training LILA/Imitation Models.
    • models/ - Lightning Modules for LILA-FiLM and Imitation-FiLM Architectures.
  • train.py - Top-Level (main) entry point to repository, for training and evaluating models. Run this first, pointing it at the appropriate configuration in conf/!.
  • Makefile - Top-level Makefile (by default, supports conda serialization, and linting). Expand to your needs.
  • .flake8 - Flake8 Configuration File (Sane Defaults).
  • .pre-commit-config.yaml - Pre-Commit Configuration File (Sane Defaults).
  • pyproject.toml - Black and isort Configuration File (Sane Defaults).+ README.md - You are here!
  • README.md - You are here!
  • LICENSE - By default, research code is made available under the MIT License.

Local Development - CPU (Mac OS & Linux)

Note: Assumes that conda (Miniconda or Anaconda are both fine) is installed and on your path. Use the -cpu environment file.

conda env create -f environments/environment-cpu.yaml
conda activate lila
pre-commit install

GPU Development - Linux w/ CUDA 11.0

conda env create -f environments/environment-gpu.yaml  # Choose CUDA Kernel based on Hardware - by default used 11.0!
conda activate lila
pre-commit install

Note: This codebase should work naively for all PyTorch > 1.7, and any CUDA version; if you run into trouble building this repository, please file an issue!


Training LILA or Imitation Models

To train models using the already collected demonstrations.

# LILA
python train.py --config conf/lila-config.yaml

# No-Language Latent Actions
python train.py --config conf/no-lang-config.yaml

# Imitatation Learning (Behavioral Cloning w/ DART-style Augmentation)
python train.py --config conf/imitation-config.yaml

This will dump models to runs/{lila-final, no-lang-final, imitation-final}/. These paths are hard-coded in the respective teleoperation/execution files below; if you change these paths, be sure to change the below files as well!

Teleoperating with LILA or End-Effector Control

First, make sure to add the custom Velocity Controller written for the Franka Emika Panda Robot Arm (written using Libfranka) to ~/libfranka/examples on your robot control box. The controller can be found in robot/libfranka/lilaVelocityController.cpp.

Then, make sure to update the path of the model trained in the previous step (for LILA) in teleoperate.py. Finally, you can drop into controlling the robot with a LILA model (and Joystick - make sure it's plugged in!) with:

# LILA Control
python teleoperate.py

# For No-Language Control, just change the arch!
python teleoperate.py --arch no-lang

# Pure End-Effector Control is also implemented by Default
python teleoperate.py --arch endeff

Running Imitation Learning

Add the Velocity Controller as described above. Then, make sure to update the path to the trained model in imitate.py and run the following:

python imitate.py

Collecting Kinesthetic Demonstrations

Each lab (and corresponding robot) is built with a different stack, and different preferred ways of recording Kinesthetic demonstrations. We have a rudimentary script record.py that shows how we do this using sockets, and the default libfranka readState.cpp built-in script. This script dumps demonstrations that can be immediately used to train latent action models.

Start-Up from Scratch

In case the above conda environment loading does not work for you, here are the concrete package dependencies required to run LILA:

conda create --name lila python=3.8
conda activate lila
conda install pytorch torchvision torchaudio -c pytorch
conda install ipython jupyter
conda install pytorch-lightning -c conda-forge

pip install black flake8 isort matplotlib pre-commit pygame quinine transformers typed-argument-parser wandb
Owner
Sidd Karamcheti
PhD Student at Stanford & Research Intern at Hugging Face 🤗
Sidd Karamcheti
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022