LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

Related tags

Deep LearningLinkNet
Overview

LinkNet

This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation for further details.

Dependencies:

  • Torch7 : you can follow our installation step specified here
  • VideoDecoder : video decoder for torch that utilizes avcodec library.
  • Profiler : use it to calculate # of paramaters, operations and forward pass time of any network trained using torch.

Currently the network can be trained on two datasets:

Datasets Input Resolution # of classes
CamVid (cv) 768x576 11
Cityscapes (cs) 1024x512 19

To download both datasets, follow the link provided above. Both the datasets are first of all resized by the training script and if you want then you can cache this resized data using --cachepath option. In case of CamVid dataset, the available video data is first split into train/validate/test set. This is done using prepCamVid.lua file. dataDistributionCV.txt contains the detail about splitting of CamVid dataset. These things are automatically run before training of the network.

LinkNet performance on both of the above dataset:

Datasets Best IoU Best iIoU
Cityscapes 76.44 60.78
CamVid 69.10 55.83

Pretrained models and confusion matrices for both datasets can be found in the latest release.

Files/folders and their usage:

  • run.lua : main file
  • opts.lua : contains all the input options used by the tranining script
  • data : data loaders for loading datasets
  • [models] : all the model architectures are defined here
  • train.lua : loading of models and error calculation
  • test.lua : calculate testing error and save confusion matrices

There are three model files present in models folder:

  • model.lua : our LinkNet architecture
  • model-res-dec.lua : LinkNet with residual connection in each of the decoder blocks. This slightly improves the result but we had to use bilinear interpolation in residual connection because of which we were not able to run our trained model on TX1.
  • nobypass.lua : this architecture does not use any link between encoder and decoder. You can use this model to verify if connecting encoder and decoder modules actually improve performance.

A sample command to train network is given below:

th main.lua --datapath /Datasets/Cityscapes/ --cachepath /dataCache/cityscapes/ --dataset cs --model models/model.lua --save /Models/cityscapes/ --saveTrainConf --saveAll --plot

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here: http://creativecommons.org/licenses/by-nc/4.0/

Comments
  • memory consuming

    memory consuming

    The model read all the dataset into the momory, this method is too memory consuming. Maybe it is better to read the dataset list and iterate the list when training .

    opened by mingminzhen 7
  • Training on camvid dataset

    Training on camvid dataset

    Hi. I can't reproduce your result on camvid dataset. What is the learning rate and number of training epoch you used in your training, is your published result on validate or test set?.

    opened by vietdoan 4
  • Torch: not enough memory (17GB)

    Torch: not enough memory (17GB)

    Hi, all

    When I run : th main.lua --datapath /data2/cityscapes_dataset/leftImg8bit/all_train_images/ --cachepath /data2/cityscapes_dataset/leftImg8bit/dataCache/ --dataset cs --model models/model.lua --save save_models/cityscapes/ --saveTrainConf --saveAll --plot

    I got "Torch: not enough memory: you tried to allocate 17GB" error (details)

    It's strange because the paper mentioned it is trained using Titan X which has 12GB memory. Why the network consumes 17GB in running?

    Any suggestion to fix this issue?

    Thanks!

    opened by amiltonwong 3
  • Fine Tuning

    Fine Tuning

    Hi,

    is there any possibility to fine-tune this model on a custom datase with different number of classes? The pre-trained weights must be exist also, as I know.

    opened by MyVanitar 3
  • Model input/output details?

    Model input/output details?

    Hi,

    I'm having a hell of a time trying to understand what the model is expecting in terms of input and output. I'm trying to use this model in an iOS project, so I need to convert the model to Apple's CoreML format.

    Image input questions:

    • For image pixel values: 0-255, 0-1, -1-1?
    • RGB or BGR?
    • Color bias?

    Prediction output:

    • Looks like the shape is # of classes, width, height?
    • Predictions are positive floats from 0-100?

    So far I'm having the best luck with these specifications:

    import torch
    from torch2coreml import convert
    from torch.utils.serialization import load_lua
    
    model = load_lua("model-cs-IoU-cpu.net")
    
    input_shape = (3, 512, 1024)
    coreml_model = convert(
            model,
            [input_shape],
            input_names=['inputImage'],
            output_names=['outputImage'],
            image_input_names=['inputImage'],
            preprocessing_args={
                'image_scale': 2/255.0
            }
        )
    coreml_model.save("/home/sean/Downloads/Final/model-cs-IoU.mlmodel")
    
    opened by seantempesta 2
  • About IoU

    About IoU

    Hi, @codeAC29
    I cannot obtain the high IoU in my training. I looked into your code and found that, the IoU is computed via averageValid. But this is actually computing the mean of class accuracy. The IoU should be the value of averageUnionValid. Do you notice the difference and obtain 76% IoU by averageUnionValid ?

    Sorry for the trouble. For convenience, I refer the definition of averageValid and averageUnionValid here.

    opened by qqning 2
  • Error while running linknet main file

    Error while running linknet main file

    Hii, I am getting this error while running main.py RuntimeError: Expected object of type torch.cuda.LongTensor but found type torch.cuda.FloatTensor for argument 2 'target'. Please help me out. Also when i try to run the trained models i am running into error. I am using pytorch to run .net files. I am not able to load them as it is showing error: name cs is not defined. It is a model. Why does it have a variable named cs(here cs represents cityscapes) in it?

    opened by Tharun98 0
  • Model fails for input size other than multiples of 32(for depth of 4)

    Model fails for input size other than multiples of 32(for depth of 4)

    Hi, If we give the input image size other than 32 multiples there is a size mismatch error when adding the output from encoder3 and decoder4. For example input image size is 1000x2000 output of encoder3 is 63x125 and decoder4 output size is 64x126. We need adjust parameters for spatialfullconvolution layer only if input image size is multiple of 2^(n+1) where n is encoder depth. For other image sizes adjust parameter depends on the image size. In this example network works if adjust parameter is zero in decoders 3 and 4. Please clarify if this network works only for 2^(n+1) sizes. Thanks.

    opened by Tharun98 1
  • How about the image resolution?

    How about the image resolution?

    Hi, I am reproducing the LinkNet. I have a doubt about the input image resolution and the output image resolution when you compute the FLOPS. I find my FLOPS and running speed are different your results reported on your paper.

    opened by ycszen 5
  • linknet  architecture

    linknet architecture

    iam trying to build linknet in caffe. Could you please help me in below qns: 1)Found that there are 5 downsampling and 6 updsampling by 2. if we have different no of up sampling and down sampling(6,5) how can we get the same output shape as input. Referred:https://arxiv.org/pdf/1707.03718.pdf 2)how many iterations you ran to get the proper results. 3)To match the encoder and decoder output shape i used crop layer before Eltwise instead of adding extra row or column. Will it make any difference?

    opened by vishnureghu007 7
  • Error while training

    Error while training

    I got the camVid dataset as specified in the in the read me file and installed video-decoder

    Ientered the following command to start training: th main.lua --datapath ./data/CamVid/ --cachepath ./dataCache/CamV/ --dataset cv --model ./models/model.lua --save ./Models/CamV/ --saveTrainConf --saveAll --plot

    And I got the following error,

    Preparing CamVid dataset for data loader Filenames and their role found in: ./misc/dataDistributionCV.txt

    Getting input images and labels for: 01TP_extract.avi /home/jayp/torch/install/bin/luajit: /home/jayp/torch/install/share/lua/5.1/trepl/init.lua:389: /home/jayp/torch/install/share/lua/5.1/trepl/init.lua:389: error loading module 'libvideo_decoder' from file '/home/jayp/torch/install/lib/lua/5.1/libvideo_decoder.so': /home/jayp/torch/install/lib/lua/5.1/libvideo_decoder.so: undefined symbol: avcodec_get_frame_defaults stack traceback: [C]: in function 'error' /home/jayp/torch/install/share/lua/5.1/trepl/init.lua:389: in function 'require' main.lua:34: in main chunk [C]: in function 'dofile' ...jayp/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:150: in main chunk

    I would really appreciate if anyone would help me with this.

    Thank You!

    opened by jay98 4
Releases(v1.0)
Owner
e-Lab
e-Lab
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021