An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Overview

Heart Failure Predictor

About

A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has chances of heart disease with probability.

Dataset

The Dataset used is the Heart Failure Prediction Dataset from kaggle. -Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Four out of 5CVD deaths are due to heart attacks and strokes, and one-third of these deaths occur prematurely in people under 70 years of age. Heart failure is a common event caused by CVDs and this dataset contains 11 features that can be used to predict a possible heart disease. -People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning model can be of great help. -This dataset was created by combining different datasets already available independently but not combined before. In this dataset, 5 heart datasets are combined over 11 common features which makes it the largest heart disease dataset available so far for research purposes.

UI Demonstration

This is an interactive website made using a python library called streamlit that implements the neural network model. You can view dataset (scrollable and explandable), several plots that have good insights on data. For prediction, user has to input various details about the patient being tested into the form. User has to provide details like age,blood pressure, maximum heart rate which can be filled using numerical inputs, sliders for numerical values and a selectbox for categorical options. Click the submit button and then click the Predict button to infer whether the patient has chances of heart disease and the probablity of having a heart disease.

ui_demonstration.mp4

To run this ui open the directory in command terminal and use the command streamlit run interface.py

Attribute Information
  • Age: age of the patient (years)
  • Sex: sex of the patient (M: Male, F: Female)
  • ChestPainType: chest pain type (TA: Typical Angina, ATA: Atypical Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic)
  • RestingBP: resting blood pressure (mm Hg)
  • Cholesterol: serum cholesterol (mm/dl)
  • FastingBS: fasting blood sugar (1: if FastingBS > 120 mg/dl, 0: otherwise)
  • RestingECG: resting electrocardiogram results (Normal: Normal, ST: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV), LVH: showing probable or definite left ventricular hypertrophy by Estes' criteria)
  • MaxHR: maximum heart rate achieved (Numeric value between 60 and 202)
  • ExerciseAngina: exercise-induced angina (Y: Yes, N: No)
  • Oldpeak: oldpeak = ST (Numeric value measured in depression)
  • ST_Slope: the slope of the peak exercise ST segment (Up: upsloping, Flat: flat, Down: downsloping)
  • HeartDisease: output class (1: heart disease, 0: Normal)

DNN Model (Keras)

The model is used is shown in the codeblock below:

model = tf.keras.Sequential([
    layers.DenseFeatures(feature_cols.values()),
    layers.BatchNormalization(input_dim = (len(feature_cols.keys()),)),
    layers.Dense(256, activation='relu',kernel_regularizer='l2'),
    layers.BatchNormalization(),
    layers.Dropout(0.4),
    layers.Dense(256, activation='relu',kernel_regularizer='l2'),
    layers.BatchNormalization(),
    layers.Dropout(0.4),
    layers.Dense(1, activation='sigmoid')
])

model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate=0.001),loss ='binary_crossentropy',metrics=['accuracy',tf.keras.metrics.AUC()])

The model is very dense and the dataset is small, so as to avoid overfitting various regularization methods are used like:

  • Batch Normalization
  • Dropout Layers
  • L2 Regularization
  • Early Stopping Callback

Feature Columns are used and datasets are of converted into tf.data.Dataset type for faster processing. Age Feature is bucketized. Whereas all other numerical features are passed as numerical feature columns. Categorical as categorical feature columns.

The model has an accuracy of approximately 98% on Test Dataset and AUC(area under roc curve) of 1.00. The model training is visualized in Tensorboard.

About files in repo

  • pred_model.ipynb: Jupyter Notebook of the code used to build the DNN and exploratory data analysis using pandas,matplotlib and seaborn
  • interface.py: Used to run the website for interactive UI
  • model_py.py: DNN Model code available in .py format
  • saved_model folder: Contains the DNN Model saved in .pb format that can be imported into any python file.
Owner
Adit Ahmedabadi
ML and DL Enthusiast | Pursuing B.Tech Degree in Electrical Engineering in Sardar Patel College for Engineering , Mumbai.
Adit Ahmedabadi
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022