Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Overview

Xilinx_Vitis_AI

This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board.


Prerequisites

  1. Vitis Core Development Kit 2019.2

This could be downloaded from here: Link to the websire

  1. Vitis-AI GitHub Repository v1.1

Here is the link to the repository v1.1

  1. Vitis-Ai Docker Container

The command to pull the container: docker pull xilinx/vitis-ai:1.1.56

  1. XRT 2019.2

GitHub Repo Link 2019.2

  1. Avnet Vitis Platform 2019.2

Here is the link to download the zip file Avnet Website

  1. Ubuntu OS 18.04

Once the tools have been setup, there are five (5) main steps to targeting an AI applications to Ultra96V2 Platform:

  1. Build the Hardware Design
  2. Compile Your Custom Model
  3. Build the AI Applications
  4. Create the SD Card Content
  5. Execute the AI Applications on hardware

Supposed that you have trained your model previously in one of the Tensorflow (.Pb), Caffe(.Caffemodel and .Prototxt) and Darknet(.Weights and .Cfg) Frameworks.

Build the Hardware Design

Clone Xilinx’s Vitis-AI github repository:

$ git clone --branch v1.1 https://github.com/Xilinx/Vitis-AI
$ cd Vitis-AI
$ export VITIS_AI_HOME = "$PWD"

Install the Avnet Vitis platform:>

Download this and extract to the hard drive of your linux machine. Then, specify the location of the Vitis platform, by creating the SDX_PLATFORM environment variable that specified to the location of the.xpfm file.

$ export SDX_PLATFORM=/home/Avnet/vitis/platform_repo/ULTRA96V2/ULTRA96V2.xpfm

Build the Hardware Project (SD Card Image)

I suggest you to download the Pre-Built from here

Compile the Trained Models

Remember that you should have pulled the docker container first.

Caffe Models:

$ cd $VITIS_AI_HOME
$ mkdir project
$ cp PATH/TO/TRAINED/MODELS  $VITIS_AI_HOME/project
$ ./docker_run.sh xilinx/vitis-ai:1.1.56
$ cd project
$ conda activate vitis-ai-caffe
$ vai_q_caffe quantize -model float.prototxt -weights float.caffemodel -calib_iter 5
$ vai_c_caffe -p .PROTOTXT -c .CAFFEMODEL -a ARCH.JSON -o OUTPUT_DIR -n NET_NAME 

Tensorflow Models:

$ cd $VITIS_AI_HOME
$ mkdir project
$ cp PATH/TO/TRAINED/MODELS  $VITIS_AI_HOME/project
$ ./docker_run.sh xilinx/vitis-ai:1.1.56
$ cd project
$ conda activate vitis-ai-tensorflow
$ vai_q_tensorflow quantize --input_frozen_graph FROZEN_PB --input_nodes xxx --output_nodes yyy --input_shapes zzz --input_fn module.calib_input --calib_iter 5
$ vai_c_tensorflow -f FROZEN_PB -a ARCH.JSON -o OUTPUT_DIR -n NET_NAME 

Compile the AI Application Using DNNDK APIs

The DNNDK API is the low-level API used to communicate with the AI engine (DPU). This API is the recommended API for users that will be creating their own custom neural networks.

Download and install the SDK for cross-compilation, specifying a unique and meaningful installation destination (knowing that this SDK will be specific to the Vitis-AI 1.1 DNNDK samples):

$ wget -O sdk.sh https://www.xilinx.com/bin/public/openDownload?filename=sdk.sh
$ chmod +x sdk.sh
$ ./sdk.sh -d ~/petalinux_sdk_vai_1_1_dnndk 

Setup the environment for cross-compilation:

$ unset LD_LIBRARY_PATH
$ source ~/petalinux_sdk_vai_1_1_dnndk/environment-setup-aarch64-xilinx-linux

Download and extract the DNNDK runtime examples and Install the additional DNNDK runtime content:

$ wget -O vitis-ai_v1.1_dnndk.tar.gz  https://www.xilinx.com/bin/public/openDownload?filename=vitis-ai_v1.1_dnndk.tar.gz
$ tar -xvzf vitis-ai-v1.1_dnndk.tar.gz
$ cd vitis-ai-v1.1_dnndk
$ ./install.sh $SDKTARGETSYSROOT

Copy the Compiled project:

$ cp -r ../project/ .

Download and extract the additional content (images and video files) for the DNNDK examples:

$ wget -O vitis-ai_v1.1_dnndk_sample_img.tar.gz https://www.xilinx.com/bin/public/openDownload?filename=vitis-ai_v1.1_dnndk_sample_img.tar.gz
$ tar -xvzf vitis-ai_v1.1_dnndk_sample_img.tar.gz

For the custom application (project folder), create a model directory and copy the dpu_*.elf model files you previously built:

$ cd $VITIS_AI_HOME/project
$ mkdir model_for_ultra96v2
$ cp -r model_for_ultra96v2 model
$ make

NOTE: You could also edit the build.sh script to add support for the new Platforms like Ultra96V2.

Execute the AI Application on ULTRA96V2

  1. Boot the Ultra96V2 with the pre-build sd-card image you dowloaded. For Learning How to Do This, Click HERE!
  2. $ cd /run/media/mmcblk0p1
  3. $ cp dpu.xclbin /usr/lib/.
  4. Install the Vitis-AI embedded package:
$ cd runtime/vitis-ai_v1.1_dnndk 
$ source ./install.sh
  1. Define the DISPLAY environment variable:
$ export DISPLAY=:0.0
$ xrandr --output DP-1 --mode 640x480
  1. Run the Custom Application:
 $ cd vitis_ai_dnndk_samples
 $ ./App 
Owner
Amin Mamandipoor
Currently, Studying Master of Computer Systems Architecture at the University of Tabriz.
Amin Mamandipoor
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022