Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Overview

Xilinx_Vitis_AI

This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board.


Prerequisites

  1. Vitis Core Development Kit 2019.2

This could be downloaded from here: Link to the websire

  1. Vitis-AI GitHub Repository v1.1

Here is the link to the repository v1.1

  1. Vitis-Ai Docker Container

The command to pull the container: docker pull xilinx/vitis-ai:1.1.56

  1. XRT 2019.2

GitHub Repo Link 2019.2

  1. Avnet Vitis Platform 2019.2

Here is the link to download the zip file Avnet Website

  1. Ubuntu OS 18.04

Once the tools have been setup, there are five (5) main steps to targeting an AI applications to Ultra96V2 Platform:

  1. Build the Hardware Design
  2. Compile Your Custom Model
  3. Build the AI Applications
  4. Create the SD Card Content
  5. Execute the AI Applications on hardware

Supposed that you have trained your model previously in one of the Tensorflow (.Pb), Caffe(.Caffemodel and .Prototxt) and Darknet(.Weights and .Cfg) Frameworks.

Build the Hardware Design

Clone Xilinx’s Vitis-AI github repository:

$ git clone --branch v1.1 https://github.com/Xilinx/Vitis-AI
$ cd Vitis-AI
$ export VITIS_AI_HOME = "$PWD"

Install the Avnet Vitis platform:>

Download this and extract to the hard drive of your linux machine. Then, specify the location of the Vitis platform, by creating the SDX_PLATFORM environment variable that specified to the location of the.xpfm file.

$ export SDX_PLATFORM=/home/Avnet/vitis/platform_repo/ULTRA96V2/ULTRA96V2.xpfm

Build the Hardware Project (SD Card Image)

I suggest you to download the Pre-Built from here

Compile the Trained Models

Remember that you should have pulled the docker container first.

Caffe Models:

$ cd $VITIS_AI_HOME
$ mkdir project
$ cp PATH/TO/TRAINED/MODELS  $VITIS_AI_HOME/project
$ ./docker_run.sh xilinx/vitis-ai:1.1.56
$ cd project
$ conda activate vitis-ai-caffe
$ vai_q_caffe quantize -model float.prototxt -weights float.caffemodel -calib_iter 5
$ vai_c_caffe -p .PROTOTXT -c .CAFFEMODEL -a ARCH.JSON -o OUTPUT_DIR -n NET_NAME 

Tensorflow Models:

$ cd $VITIS_AI_HOME
$ mkdir project
$ cp PATH/TO/TRAINED/MODELS  $VITIS_AI_HOME/project
$ ./docker_run.sh xilinx/vitis-ai:1.1.56
$ cd project
$ conda activate vitis-ai-tensorflow
$ vai_q_tensorflow quantize --input_frozen_graph FROZEN_PB --input_nodes xxx --output_nodes yyy --input_shapes zzz --input_fn module.calib_input --calib_iter 5
$ vai_c_tensorflow -f FROZEN_PB -a ARCH.JSON -o OUTPUT_DIR -n NET_NAME 

Compile the AI Application Using DNNDK APIs

The DNNDK API is the low-level API used to communicate with the AI engine (DPU). This API is the recommended API for users that will be creating their own custom neural networks.

Download and install the SDK for cross-compilation, specifying a unique and meaningful installation destination (knowing that this SDK will be specific to the Vitis-AI 1.1 DNNDK samples):

$ wget -O sdk.sh https://www.xilinx.com/bin/public/openDownload?filename=sdk.sh
$ chmod +x sdk.sh
$ ./sdk.sh -d ~/petalinux_sdk_vai_1_1_dnndk 

Setup the environment for cross-compilation:

$ unset LD_LIBRARY_PATH
$ source ~/petalinux_sdk_vai_1_1_dnndk/environment-setup-aarch64-xilinx-linux

Download and extract the DNNDK runtime examples and Install the additional DNNDK runtime content:

$ wget -O vitis-ai_v1.1_dnndk.tar.gz  https://www.xilinx.com/bin/public/openDownload?filename=vitis-ai_v1.1_dnndk.tar.gz
$ tar -xvzf vitis-ai-v1.1_dnndk.tar.gz
$ cd vitis-ai-v1.1_dnndk
$ ./install.sh $SDKTARGETSYSROOT

Copy the Compiled project:

$ cp -r ../project/ .

Download and extract the additional content (images and video files) for the DNNDK examples:

$ wget -O vitis-ai_v1.1_dnndk_sample_img.tar.gz https://www.xilinx.com/bin/public/openDownload?filename=vitis-ai_v1.1_dnndk_sample_img.tar.gz
$ tar -xvzf vitis-ai_v1.1_dnndk_sample_img.tar.gz

For the custom application (project folder), create a model directory and copy the dpu_*.elf model files you previously built:

$ cd $VITIS_AI_HOME/project
$ mkdir model_for_ultra96v2
$ cp -r model_for_ultra96v2 model
$ make

NOTE: You could also edit the build.sh script to add support for the new Platforms like Ultra96V2.

Execute the AI Application on ULTRA96V2

  1. Boot the Ultra96V2 with the pre-build sd-card image you dowloaded. For Learning How to Do This, Click HERE!
  2. $ cd /run/media/mmcblk0p1
  3. $ cp dpu.xclbin /usr/lib/.
  4. Install the Vitis-AI embedded package:
$ cd runtime/vitis-ai_v1.1_dnndk 
$ source ./install.sh
  1. Define the DISPLAY environment variable:
$ export DISPLAY=:0.0
$ xrandr --output DP-1 --mode 640x480
  1. Run the Custom Application:
 $ cd vitis_ai_dnndk_samples
 $ ./App 
Owner
Amin Mamandipoor
Currently, Studying Master of Computer Systems Architecture at the University of Tabriz.
Amin Mamandipoor
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022