The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

Overview

GUESS WHO

Main Links: [Github] [App]

Related Links: [CLIP] [Celeba]

The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face. To discover the image, the player must ask questions that can be answered with a binary response, such as "Yes and No". After every question made by the player, the images that don't share the same answer that the winning one are discarded automatically. The answer to the player's questions, and thus, the process of discarding the images will be established by CLIP. When all the images but one have been discarded, the game is over.

The "Guess Who?" game has a handicap when it uses real images, because it is necessary to always ensure that the same criteria are applied when the images are discarded. The original game uses images with characters that present simple and limited features like a short set of different types of hair colors, what makes it very easy to answer true or false when a user asks for a specific hair color. However, with real images it is possible to doubt about if a person is blond haired or brown haired, for example, and it is necessary to apply a method which ensures that the winning image is not discarded by mistake. To solve this problem, CLIP is used to discard the images that do not coincide with the winner image after each prompt. In this way, when the user asks a question, CLIP is used to classify the images in two groups: the set of images that continue because they have the same prediction than the winning image, and the discarded set that has the opposite prediction. The next figure shows the screen that is prompted after calling CLIP on each image in the game board, where the discarded images are highlighted in red and the others in green. CLIP

Select Images

The first step of the game is to select the images to play. The player can press a button to randomly change the used images, which are taken from the CelebA data set. This data set contains 202,599 face images of the size 178×218 from 10,177 celebrities, each annotated with 40 binary labels indicating facial attributes like hair color, gender and age. (see next figure). CLIP

Ask Questions

The game will allow the player to ask the questions in 4 different ways:

1. Default Question

This option consist on select a question from a list. A drop-down list allows the player to select the question to be asked from a group of pre-set questions, taken from the set of binary labels of the Celeba data set. Under the hood, each question is translated into a pair of textual prompts for the CLIP model to allow for the binary classification based on that question. When they are passed to CLIP along with an image, the model responds by giving a greater value to the prompt that is most related to the image. (see next figure). CLIP

2. Write your own prompt

This option is used to allow the player introducing a textual prompt for CLIP with his/her own words. The player text will be then confronted with the neutral prompt, "A picture of a person", and the pair of prompts will be passed to CLIP as in the previous case. (see next figure) CLIP

3. Write your own two prompts

In this case two text input are used to allow the player write two sentences. The player must use two opposite sentences, that is, with an opposite meaning. (see next figure). CLIP

4. Select a winner

This option does not use the CLIP model to make decisions, the player can simply choose one of the images as the winner and if the player hits the winning image, the game is over. (see next figure). CLIP

Punctuation

To motivate the players in finding the winning image with the minimum number of questions, a scoring system is established so that it begins with a certain number of points (100 in the example), and decreases with each asked question. The score is decreased by subtracting the number of remaining images after each question. Furthermore, there are two extra penalties. The first is applied when the player uses the option "Select a winner". This penalty depends on the number of remaining images, so that the fewer images are left, the bigger will be the penalty. Finally, the score is also decreased by two extra points if, after the player makes a question, no image can be discarded.

Acknowledgements

This work has been supported by the company Dimai S.L and next research projects: FightDIS (PID2020-117263GB-100), IBERIFIER (2020-EU-IA-0252:29374659), and the CIVIC project (BBVA Foundation Grants For Scientific Research Teams SARS-CoV-2 and COVID-19).

Owner
Arnau - DIMAI
Arnau - DIMAI
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022