Image Recognition using Pytorch

Overview

PyTorch Project Template

A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in pytorch projects here's a pytorch project template that combines simplicity, best practice for folder structure and good OOP design. The main idea is that there's much same stuff you do every time when you start your pytorch project, so wrapping all this shared stuff will help you to change just the core idea every time you start a new pytorch project.

So, here’s a simple pytorch template that help you get into your main project faster and just focus on your core (Model Architecture, Training Flow, etc)

In order to decrease repeated stuff, we recommend to use a high-level library. You can write your own high-level library or you can just use some third-part libraries such as ignite, fastai, mmcv … etc. This can help you write compact but full-featured training loops in a few lines of code. Here we use ignite to train mnist as an example.

Requirements

  • yacs (Yet Another Configuration System)
  • PyTorch (An open source deep learning platform)
  • ignite (High-level library to help with training neural networks in PyTorch)

Table Of Contents

In a Nutshell

In a nutshell here's how to use this template, so for example assume you want to implement ResNet-18 to train mnist, so you should do the following:

  • In modeling folder create a python file named whatever you like, here we named it example_model.py . In modeling/__init__.py file, you can build a function named build_model to call your model
from .example_model import ResNet18

def build_model(cfg):
    model = ResNet18(cfg.MODEL.NUM_CLASSES)
    return model
  • In engine folder create a model trainer function and inference function. In trainer function, you need to write the logic of the training process, you can use some third-party library to decrease the repeated stuff.
# trainer
def do_train(cfg, model, train_loader, val_loader, optimizer, scheduler, loss_fn):
 """
 implement the logic of epoch:
 -loop on the number of iterations in the config and call the train step
 -add any summaries you want using the summary
 """
pass

# inference
def inference(cfg, model, val_loader):
"""
implement the logic of the train step
- run the tensorflow session
- return any metrics you need to summarize
 """
pass
  • In tools folder, you create the train.py . In this file, you need to get the instances of the following objects "Model", "DataLoader”, “Optimizer”, and config
# create instance of the model you want
model = build_model(cfg)

# create your data generator
train_loader = make_data_loader(cfg, is_train=True)
val_loader = make_data_loader(cfg, is_train=False)

# create your model optimizer
optimizer = make_optimizer(cfg, model)
  • Pass the all these objects to the function do_train , and start your training
# here you train your model
do_train(cfg, model, train_loader, val_loader, optimizer, None, F.cross_entropy)

You will find a template file and a simple example in the model and trainer folder that shows you how to try your first model simply.

In Details

├──  config
│    └── defaults.py  - here's the default config file.
│
│
├──  configs  
│    └── train_mnist_softmax.yml  - here's the specific config file for specific model or dataset.
│ 
│
├──  data  
│    └── datasets  - here's the datasets folder that is responsible for all data handling.
│    └── transforms  - here's the data preprocess folder that is responsible for all data augmentation.
│    └── build.py  		   - here's the file to make dataloader.
│    └── collate_batch.py   - here's the file that is responsible for merges a list of samples to form a mini-batch.
│
│
├──  engine
│   ├── trainer.py     - this file contains the train loops.
│   └── inference.py   - this file contains the inference process.
│
│
├── layers              - this folder contains any customed layers of your project.
│   └── conv_layer.py
│
│
├── modeling            - this folder contains any model of your project.
│   └── example_model.py
│
│
├── solver             - this folder contains optimizer of your project.
│   └── build.py
│   └── lr_scheduler.py
│   
│ 
├──  tools                - here's the train/test model of your project.
│    └── train_net.py  - here's an example of train model that is responsible for the whole pipeline.
│ 
│ 
└── utils
│    ├── logger.py
│    └── any_other_utils_you_need
│ 
│ 
└── tests					- this foler contains unit test of your project.
     ├── test_data_sampler.py

Future Work

Contributing

Any kind of enhancement or contribution is welcomed.

Acknowledgments

Owner
Sarat Chinni
Machine learning Engineer
Sarat Chinni
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022