Image Recognition using Pytorch

Overview

PyTorch Project Template

A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in pytorch projects here's a pytorch project template that combines simplicity, best practice for folder structure and good OOP design. The main idea is that there's much same stuff you do every time when you start your pytorch project, so wrapping all this shared stuff will help you to change just the core idea every time you start a new pytorch project.

So, here’s a simple pytorch template that help you get into your main project faster and just focus on your core (Model Architecture, Training Flow, etc)

In order to decrease repeated stuff, we recommend to use a high-level library. You can write your own high-level library or you can just use some third-part libraries such as ignite, fastai, mmcv … etc. This can help you write compact but full-featured training loops in a few lines of code. Here we use ignite to train mnist as an example.

Requirements

  • yacs (Yet Another Configuration System)
  • PyTorch (An open source deep learning platform)
  • ignite (High-level library to help with training neural networks in PyTorch)

Table Of Contents

In a Nutshell

In a nutshell here's how to use this template, so for example assume you want to implement ResNet-18 to train mnist, so you should do the following:

  • In modeling folder create a python file named whatever you like, here we named it example_model.py . In modeling/__init__.py file, you can build a function named build_model to call your model
from .example_model import ResNet18

def build_model(cfg):
    model = ResNet18(cfg.MODEL.NUM_CLASSES)
    return model
  • In engine folder create a model trainer function and inference function. In trainer function, you need to write the logic of the training process, you can use some third-party library to decrease the repeated stuff.
# trainer
def do_train(cfg, model, train_loader, val_loader, optimizer, scheduler, loss_fn):
 """
 implement the logic of epoch:
 -loop on the number of iterations in the config and call the train step
 -add any summaries you want using the summary
 """
pass

# inference
def inference(cfg, model, val_loader):
"""
implement the logic of the train step
- run the tensorflow session
- return any metrics you need to summarize
 """
pass
  • In tools folder, you create the train.py . In this file, you need to get the instances of the following objects "Model", "DataLoader”, “Optimizer”, and config
# create instance of the model you want
model = build_model(cfg)

# create your data generator
train_loader = make_data_loader(cfg, is_train=True)
val_loader = make_data_loader(cfg, is_train=False)

# create your model optimizer
optimizer = make_optimizer(cfg, model)
  • Pass the all these objects to the function do_train , and start your training
# here you train your model
do_train(cfg, model, train_loader, val_loader, optimizer, None, F.cross_entropy)

You will find a template file and a simple example in the model and trainer folder that shows you how to try your first model simply.

In Details

├──  config
│    └── defaults.py  - here's the default config file.
│
│
├──  configs  
│    └── train_mnist_softmax.yml  - here's the specific config file for specific model or dataset.
│ 
│
├──  data  
│    └── datasets  - here's the datasets folder that is responsible for all data handling.
│    └── transforms  - here's the data preprocess folder that is responsible for all data augmentation.
│    └── build.py  		   - here's the file to make dataloader.
│    └── collate_batch.py   - here's the file that is responsible for merges a list of samples to form a mini-batch.
│
│
├──  engine
│   ├── trainer.py     - this file contains the train loops.
│   └── inference.py   - this file contains the inference process.
│
│
├── layers              - this folder contains any customed layers of your project.
│   └── conv_layer.py
│
│
├── modeling            - this folder contains any model of your project.
│   └── example_model.py
│
│
├── solver             - this folder contains optimizer of your project.
│   └── build.py
│   └── lr_scheduler.py
│   
│ 
├──  tools                - here's the train/test model of your project.
│    └── train_net.py  - here's an example of train model that is responsible for the whole pipeline.
│ 
│ 
└── utils
│    ├── logger.py
│    └── any_other_utils_you_need
│ 
│ 
└── tests					- this foler contains unit test of your project.
     ├── test_data_sampler.py

Future Work

Contributing

Any kind of enhancement or contribution is welcomed.

Acknowledgments

Owner
Sarat Chinni
Machine learning Engineer
Sarat Chinni
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023