This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

Overview

MoroccoAI Data Challenge (Edition #001)

This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first MoroccoAI Data Challenge. For More Information, check the Kaggle Competetion page !

Automatic Number Plate Recognition (ANPR) in Morocco Licensed Vehicles

In Morocco, the number of registered vehicles doubled between 2000 and 2019. In 2019, a few months before lockdowns due to the Coronavirus Pandemic, 8 road fatalities were recorded per 10 000 registered vehicles. This rate is extremely high when compared with other IRTAD countries. The National Road Safety Agency (NARSA) established the road safety strategy 2017-26 with the main target to reduce the number of road deaths by 50% between 2015 and 2026 [1]. Law enforcement, speed limit enforcement and traffic control are one of most efficient measures taken by the authorities to achieve modern road user safety. Automatic Number Plate Recognition (ANPR) is used by the police around the world for law and speed limit enforcement and traffic control purposes, including to check if a vehicle is registered or licensed. It is also used as a method of cataloguing the movements of traffic by highways agencies. ANPR uses optical character recognition (OCR) to read vehicles’ license plates from images. This is very challenging for many reasons including non-standardized license plate formats, complex image acquisition scenes, camera conditions, environmental conditions, indoor/outdoor or day/night shots, etc. This data-challenge addresses the problem of ANPR in Morocco licensed vehicles. Based on a small training dataset of 450 labeled car images, the participants have to provide models able to accurately recognize the plate numbers of Morocco licensed vehicles.

Table of Contents

Dataset

The dataset is 654 jpg pictures of the front or back of vehicles showing the license plate. They are of different sizes and are mostly cars. The plate license follows Moroccan standard.

For each plate corresponds a string (series of numbers and latin characters) labeled manually. The plate strings could contain a series of numbers and latin letters of different length. Because letters in Morocco license plate standard are Arabic letters, we will consider the following transliteration: a <=> أ, b <=> ب, j <=> ج (jamaa), d <=> د , h <=> ه , waw <=> و, w <=> w (newly licensed cars), p <=> ش (police), fx <=> ق س (auxiliary forces), far <=> ق م م (royal army forces), m <=>المغرب, m <=>M. For example:

  • the string “123ب45” have to be converted to “12345b”,
  • the string “123و4567” to “1234567waw”,
  • the string “12و4567” to “1234567waw”,
  • the string “1234567ww” to “1234567ww”, (remain the same)
  • the string “1234567far” to “1234567ق م م”,
  • the string “1234567m” to “1234567المغرب",
  • etc.

We offer the plate strings of 450 images (training set). The remaining 204 unlabeled images will be the test set. The participants are asked to provide the plate strings in the test set.
image

Our Approach

Our approach was to use Object Detection to detect plate characters from images. We have chosen to build two models separately instead of using libraries directly like easyOCR or Tesseract due to its weaknesses in handling the variance in the shapes of Moroccan License plates. The first model was trained to detect the licence plate to be then cropped from the original image, which will be then passed into the second model that was trained to detect the characters.

  • Data acquisition and preparation

    First we start by annotating the dataset on our own using a tool called LabelImg. Then we found that the dataset provided by MSDA Lab was publicly available and fits our approach, as they have prepared the annotation in the following form :

    • A folder that contains the Original image and bounding boxes of plates with 2 format Pascal Voc Format and Yolo Darknet Format.
    • And the other folder , contains only the licence plates and the characters bounding boxes with the same formats.
  • Library and Model Architecture

    We have choose faster-rcnn model for both Object detection tasks, using library called detectron2 based on Pytorch and developed by FaceBook AI Research Laboratory (FAIR). A Faster R-CNN object detection network is composed of a feature extraction network which is typically a pretrained CNN, similar to what we had used for its predecessor. This is then followed by two subnetworks which are trainable. The first is a Region Proposal Network (RPN), which is, as its name suggests, used to generate object proposals and the second is used to predict the actual class of the object. So the primary differentiator for Faster R-CNN is the RPN which is inserted after the last convolutional layer. This is trained to produce region proposals directly without the need for any external mechanism like Selective Search. After this we use ROI pooling and an upstream classifier and bounding box regressor similar to Fast R-CNN.

  • Modeling

Training a first Faster-RCNN model only to detect licence plates.

And a second trained separately only to detect characters on cropped images of the licence plates.

The both models were pretrained on the COCO dataset, because we didn’t have enough data, therefor it would only make sense to take the advantage of transfer learning of models that were trained on such a rich dataset.

  • Post-Processing
    Now we have a good model that can detect the majority of the characters in Licence Plates, the work is not done yet, because our model returns the boxes of detected characters, without taking the order in consideration. So we had to do a post-processing algorithm that can return the licence plate characters in the right order.
    1. Split characters based on median of Y-Min of all detected characters boxes, by taking characters where their Y-Max is smaller than Median-Y-Mins into a string called top-characters, and those who have Y-Max greater than Median-Y-Mins will be in bottom_characters.
    2. Order characters in top and bottom list from left to right based on the X_Min of the detected Box of each character.

Owner
SAFOINE EL KHABICH
SAFOINE EL KHABICH
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023