This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

Overview

MoroccoAI Data Challenge (Edition #001)

This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first MoroccoAI Data Challenge. For More Information, check the Kaggle Competetion page !

Automatic Number Plate Recognition (ANPR) in Morocco Licensed Vehicles

In Morocco, the number of registered vehicles doubled between 2000 and 2019. In 2019, a few months before lockdowns due to the Coronavirus Pandemic, 8 road fatalities were recorded per 10 000 registered vehicles. This rate is extremely high when compared with other IRTAD countries. The National Road Safety Agency (NARSA) established the road safety strategy 2017-26 with the main target to reduce the number of road deaths by 50% between 2015 and 2026 [1]. Law enforcement, speed limit enforcement and traffic control are one of most efficient measures taken by the authorities to achieve modern road user safety. Automatic Number Plate Recognition (ANPR) is used by the police around the world for law and speed limit enforcement and traffic control purposes, including to check if a vehicle is registered or licensed. It is also used as a method of cataloguing the movements of traffic by highways agencies. ANPR uses optical character recognition (OCR) to read vehicles’ license plates from images. This is very challenging for many reasons including non-standardized license plate formats, complex image acquisition scenes, camera conditions, environmental conditions, indoor/outdoor or day/night shots, etc. This data-challenge addresses the problem of ANPR in Morocco licensed vehicles. Based on a small training dataset of 450 labeled car images, the participants have to provide models able to accurately recognize the plate numbers of Morocco licensed vehicles.

Table of Contents

Dataset

The dataset is 654 jpg pictures of the front or back of vehicles showing the license plate. They are of different sizes and are mostly cars. The plate license follows Moroccan standard.

For each plate corresponds a string (series of numbers and latin characters) labeled manually. The plate strings could contain a series of numbers and latin letters of different length. Because letters in Morocco license plate standard are Arabic letters, we will consider the following transliteration: a <=> أ, b <=> ب, j <=> ج (jamaa), d <=> د , h <=> ه , waw <=> و, w <=> w (newly licensed cars), p <=> ش (police), fx <=> ق س (auxiliary forces), far <=> ق م م (royal army forces), m <=>المغرب, m <=>M. For example:

  • the string “123ب45” have to be converted to “12345b”,
  • the string “123و4567” to “1234567waw”,
  • the string “12و4567” to “1234567waw”,
  • the string “1234567ww” to “1234567ww”, (remain the same)
  • the string “1234567far” to “1234567ق م م”,
  • the string “1234567m” to “1234567المغرب",
  • etc.

We offer the plate strings of 450 images (training set). The remaining 204 unlabeled images will be the test set. The participants are asked to provide the plate strings in the test set.
image

Our Approach

Our approach was to use Object Detection to detect plate characters from images. We have chosen to build two models separately instead of using libraries directly like easyOCR or Tesseract due to its weaknesses in handling the variance in the shapes of Moroccan License plates. The first model was trained to detect the licence plate to be then cropped from the original image, which will be then passed into the second model that was trained to detect the characters.

  • Data acquisition and preparation

    First we start by annotating the dataset on our own using a tool called LabelImg. Then we found that the dataset provided by MSDA Lab was publicly available and fits our approach, as they have prepared the annotation in the following form :

    • A folder that contains the Original image and bounding boxes of plates with 2 format Pascal Voc Format and Yolo Darknet Format.
    • And the other folder , contains only the licence plates and the characters bounding boxes with the same formats.
  • Library and Model Architecture

    We have choose faster-rcnn model for both Object detection tasks, using library called detectron2 based on Pytorch and developed by FaceBook AI Research Laboratory (FAIR). A Faster R-CNN object detection network is composed of a feature extraction network which is typically a pretrained CNN, similar to what we had used for its predecessor. This is then followed by two subnetworks which are trainable. The first is a Region Proposal Network (RPN), which is, as its name suggests, used to generate object proposals and the second is used to predict the actual class of the object. So the primary differentiator for Faster R-CNN is the RPN which is inserted after the last convolutional layer. This is trained to produce region proposals directly without the need for any external mechanism like Selective Search. After this we use ROI pooling and an upstream classifier and bounding box regressor similar to Fast R-CNN.

  • Modeling

Training a first Faster-RCNN model only to detect licence plates.

And a second trained separately only to detect characters on cropped images of the licence plates.

The both models were pretrained on the COCO dataset, because we didn’t have enough data, therefor it would only make sense to take the advantage of transfer learning of models that were trained on such a rich dataset.

  • Post-Processing
    Now we have a good model that can detect the majority of the characters in Licence Plates, the work is not done yet, because our model returns the boxes of detected characters, without taking the order in consideration. So we had to do a post-processing algorithm that can return the licence plate characters in the right order.
    1. Split characters based on median of Y-Min of all detected characters boxes, by taking characters where their Y-Max is smaller than Median-Y-Mins into a string called top-characters, and those who have Y-Max greater than Median-Y-Mins will be in bottom_characters.
    2. Order characters in top and bottom list from left to right based on the X_Min of the detected Box of each character.

Owner
SAFOINE EL KHABICH
SAFOINE EL KHABICH
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021