This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. πŸ’» + πŸš™ + πŸ‡²πŸ‡¦ = πŸ€– πŸ•΅πŸ»β€β™‚οΈ

Overview

MoroccoAI Data Challenge (Edition #001)

This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first MoroccoAI Data Challenge. For More Information, check the Kaggle Competetion page !

Automatic Number Plate Recognition (ANPR) in Morocco Licensed Vehicles

In Morocco, the number of registered vehicles doubled between 2000 and 2019. In 2019, a few months before lockdowns due to the Coronavirus Pandemic, 8 road fatalities were recorded per 10 000 registered vehicles. This rate is extremely high when compared with other IRTAD countries. The National Road Safety Agency (NARSA) established the road safety strategy 2017-26 with the main target to reduce the number of road deaths by 50% between 2015 and 2026 [1]. Law enforcement, speed limit enforcement and traffic control are one of most efficient measures taken by the authorities to achieve modern road user safety. Automatic Number Plate Recognition (ANPR) is used by the police around the world for law and speed limit enforcement and traffic control purposes, including to check if a vehicle is registered or licensed. It is also used as a method of cataloguing the movements of traffic by highways agencies. ANPR uses optical character recognition (OCR) to read vehicles’ license plates from images. This is very challenging for many reasons including non-standardized license plate formats, complex image acquisition scenes, camera conditions, environmental conditions, indoor/outdoor or day/night shots, etc. This data-challenge addresses the problem of ANPR in Morocco licensed vehicles. Based on a small training dataset of 450 labeled car images, the participants have to provide models able to accurately recognize the plate numbers of Morocco licensed vehicles.

Table of Contents

Dataset

The dataset is 654 jpg pictures of the front or back of vehicles showing the license plate. They are of different sizes and are mostly cars. The plate license follows Moroccan standard.

For each plate corresponds a string (series of numbers and latin characters) labeled manually. The plate strings could contain a series of numbers and latin letters of different length. Because letters in Morocco license plate standard are Arabic letters, we will consider the following transliteration: a <=> Ψ£, b <=> Ψ¨, j <=> Ψ¬ (jamaa), d <=> Ψ― , h <=> Ω‡ , waw <=> و, w <=> w (newly licensed cars), p <=> Ψ΄ (police), fx <=> Ω‚ Ψ³ (auxiliary forces), far <=> Ω‚ Ω… Ω… (royal army forces), m <=>Ψ§Ω„Ω…ΨΊΨ±Ψ¨, m <=>M. For example:

  • the string β€œ123Ψ¨45” have to be converted to β€œ12345b”,
  • the string β€œ123و4567” to β€œ1234567waw”,
  • the string β€œ12و4567” to β€œ1234567waw”,
  • the string β€œ1234567ww” to β€œ1234567ww”, (remain the same)
  • the string β€œ1234567far” to β€œ1234567Ω‚ Ω… م”,
  • the string β€œ1234567m” to β€œ1234567Ψ§Ω„Ω…ΨΊΨ±Ψ¨",
  • etc.

We offer the plate strings of 450 images (training set). The remaining 204 unlabeled images will be the test set. The participants are asked to provide the plate strings in the test set.
image

Our Approach

Our approach was to use Object Detection to detect plate characters from images. We have chosen to build two models separately instead of using libraries directly like easyOCR or Tesseract due to its weaknesses in handling the variance in the shapes of Moroccan License plates. The first model was trained to detect the licence plate to be then cropped from the original image, which will be then passed into the second model that was trained to detect the characters.

  • Data acquisition and preparation

    First we start by annotating the dataset on our own using a tool called LabelImg. Then we found that the dataset provided by MSDA Lab was publicly available and fits our approach, as they have prepared the annotation in the following form :

    • A folder that contains the Original image and bounding boxes of plates with 2 format Pascal Voc Format and Yolo Darknet Format.
    • And the other folder , contains only the licence plates and the characters bounding boxes with the same formats.
  • Library and Model Architecture

    We have choose faster-rcnn model for both Object detection tasks, using library called detectron2 based on Pytorch and developed by FaceBook AI Research Laboratory (FAIR). A Faster R-CNN object detection network is composed of a feature extraction network which is typically a pretrained CNN, similar to what we had used for its predecessor. This is then followed by two subnetworks which are trainable. The first is a Region Proposal Network (RPN), which is, as its name suggests, used to generate object proposals and the second is used to predict the actual class of the object. So the primary differentiator for Faster R-CNN is the RPN which is inserted after the last convolutional layer. This is trained to produce region proposals directly without the need for any external mechanism like Selective Search. After this we use ROI pooling and an upstream classifier and bounding box regressor similar to Fast R-CNN.

  • Modeling

Training a first Faster-RCNN model only to detect licence plates.

And a second trained separately only to detect characters on cropped images of the licence plates.

The both models were pretrained on the COCO dataset, because we didn’t have enough data, therefor it would only make sense to take the advantage of transfer learning of models that were trained on such a rich dataset.

  • Post-Processing
    Now we have a good model that can detect the majority of the characters in Licence Plates, the work is not done yet, because our model returns the boxes of detected characters, without taking the order in consideration. So we had to do a post-processing algorithm that can return the licence plate characters in the right order.
    1. Split characters based on median of Y-Min of all detected characters boxes, by taking characters where their Y-Max is smaller than Median-Y-Mins into a string called top-characters, and those who have Y-Max greater than Median-Y-Mins will be in bottom_characters.
    2. Order characters in top and bottom list from left to right based on the X_Min of the detected Box of each character.

Owner
SAFOINE EL KHABICH
SAFOINE EL KHABICH
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022