Ladder Variational Autoencoders (LVAE) in PyTorch

Overview

Ladder Variational Autoencoders (LVAE)

PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]:

                 LVAE equation

where the variational distributions q at each layer are multivariate Normal with diagonal covariance.

Significant differences from [1] include:

  • skip connections in the generative path: conditioning on all layers above rather than only on the layer above (see for example [2])
  • spatial (convolutional) latent variables
  • free bits [3] instead of beta annealing [4]

Install requirements and run MNIST example

pip install -r requirements.txt
CUDA_VISIBLE_DEVICES=0 python main.py --zdims 32 32 32 --downsample 1 1 1 --nonlin elu --skip --blocks-per-layer 4 --gated --freebits 0.5 --learn-top-prior --data-dep-init --seed 42 --dataset static_mnist

Dependencies include boilr (a framework for PyTorch) and multiobject (which provides multi-object datasets with PyTorch dataloaders).

Likelihood results

Log likelihood bounds on the test set (average over 4 random seeds).

dataset num layers -ELBO - log p(x)
[100 iws]
- log p(x)
[1000 iws]
binarized MNIST 3 82.14 79.47 79.24
binarized MNIST 6 80.74 78.65 78.52
binarized MNIST 12 80.50 78.50 78.30
multi-dSprites (0-2) 12 26.9 23.2
SVHN 15 4012 (1.88) 3973 (1.87)
CIFAR10 3 7651 (3.59) 7591 (3.56)
CIFAR10 6 7321 (3.44) 7268 (3.41)
CIFAR10 15 7128 (3.35) 7068 (3.32)
CelebA 20 20026 (2.35) 19913 (2.34)

Note:

  • Bits per dimension in brackets.
  • 'iws' stands for importance weighted samples. More samples means tighter log likelihood lower bound. The bound converges to the actual log likelihood as the number of samples goes to infinity [5]. Note that the model is always trained with the ELBO (1 sample).
  • Each pixel in the images is modeled independently. The likelihood is Bernoulli for binary images, and discretized mixture of logistics with 10 components [6] otherwise.
  • One day I'll get around to evaluating the IW bound on all datasets with 10000 samples.

Supported datasets

  • Statically binarized MNIST [7], see Hugo Larochelle's website http://www.cs.toronto.edu/~larocheh/public/datasets/
  • SVHN
  • CIFAR10
  • CelebA rescaled and cropped to 64x64 – see code for details. The path in experiment.data.DatasetLoader has to be modified
  • binary multi-dSprites: 64x64 RGB shapes (0 to 2) in each image

Samples

Binarized MNIST

MNIST samples

Multi-dSprites

multi-dSprites samples

SVHN

SVHN samples

CIFAR

CIFAR samples

CelebA

CelebA samples

Hierarchical representations

Here we try to visualize the representations learned by individual layers. We can get a rough idea of what's going on at layer i as follows:

  • Sample latent variables from all layers above layer i (Eq. 1).

  • With these variables fixed, take S conditional samples at layer i (Eq. 2). Note that they are all conditioned on the same samples. These correspond to one row in the images below.

  • For each of these samples (each small image in the images below), pick the mode/mean of the conditional distribution of each layer below (Eq. 3).

  • Finally, sample an image x given the latent variables (Eq. 4).

Formally:

                

where s = 1, ..., S denotes the sample index.

The equations above yield S sample images conditioned on the same values of z for layers i+1 to L. These S samples are shown in one row of the images below. Notice that samples from each row are almost identical when the variability comes from a low-level layer, as such layers mostly model local structure and details. Higher layers on the other hand model global structure, and we observe more and more variability in each row as we move to higher layers. When the sampling happens in the top layer (i = L), all samples are completely independent, even within a row.

Binarized MNIST: layers 4, 8, 10, and 12 (top layer)

MNIST layers 4   MNIST layers 8

MNIST layers 10   MNIST layers 12

SVHN: layers 4, 10, 13, and 15 (top layer)

SVHN layers 4   SVHN layers 10

SVHN layers 13   SVHN layers 15

CIFAR: layers 3, 7, 10, and 15 (top layer)

CIFAR layers 3   CIFAR layers 7

CIFAR layers 10   CIFAR layers 15

CelebA: layers 6, 11, 16, and 20 (top layer)

CelebA layers 6

CelebA layers 11

CelebA layers 16

CelebA layers 20

Multi-dSprites: layers 3, 7, 10, and 12 (top layer)

MNIST layers 4   MNIST layers 8

MNIST layers 10   MNIST layers 12

Experimental details

I did not perform an extensive hyperparameter search, but this worked pretty well:

  • Downsampling by a factor of 2 in the beginning of inference. After that, activations are downsampled 4 times for 64x64 images (CelebA and multi-dSprites), and 3 times otherwise. The spatial size of the final feature map is always 2x2. Between these downsampling steps there is approximately the same number of stochastic layers.
  • 4 residual blocks between stochastic layers. Haven't tried with more than 4 though, as models become quite big and we get diminishing returns.
  • The deterministic parts of bottom-up and top-down architecture are (almost) perfectly mirrored for simplicity.
  • Stochastic layers have spatial random variables, and the number of rvs per "location" (i.e. number of channels of the feature map after sampling from a layer) is 32 in all layers.
  • All other feature maps in deterministic paths have 64 channels.
  • Skip connections in the generative model (--skip).
  • Gated residual blocks (--gated).
  • Learned prior of the top layer (--learn-top-prior).
  • A form of data-dependent initialization of weights (--data-dep-init). See code for details.
  • freebits=1.0 in experiments with more than 6 stochastic layers, and 0.5 for smaller models.
  • For everything else, see _add_args() in experiment/experiment_manager.py.

With these settings, the number of parameters is roughly 1M per stochastic layer. I tried to control for this by experimenting e.g. with half the number of layers but twice the number of residual blocks, but it looks like the number of stochastic layers is what matters the most.

References

[1] CK Sønderby, T Raiko, L Maaløe, SK Sønderby, O Winther. Ladder Variational Autoencoders, NIPS 2016

[2] L Maaløe, M Fraccaro, V Liévin, O Winther. BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling, NeurIPS 2019

[3] DP Kingma, T Salimans, R Jozefowicz, X Chen, I Sutskever, M Welling. Improved Variational Inference with Inverse Autoregressive Flow, NIPS 2016

[4] I Higgins, L Matthey, A Pal, C Burgess, X Glorot, M Botvinick, S Mohamed, A Lerchner. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, ICLR 2017

[5] Y Burda, RB Grosse, R Salakhutdinov. Importance Weighted Autoencoders, ICLR 2016

[6] T Salimans, A Karpathy, X Chen, DP Kingma. PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications, ICLR 2017

[7] H Larochelle, I Murray. The neural autoregressive distribution estimator, AISTATS 2011

Owner
Andrea Dittadi
PhD student at DTU Compute | representation learning, deep generative models
Andrea Dittadi
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022