Unsupervised Learning of Video Representations using LSTMs

Overview

Unsupervised Learning of Video Representations using LSTMs

Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivastava, Elman Mansimov, Ruslan Salakhutdinov; ICML 2015.

We use multilayer Long Short Term Memory (LSTM) networks to learn representations of video sequences. The representation can be used to perform different tasks, such as reconstructing the input sequence, predicting the future sequence, or for classification. Examples:

mnist gif1 mnist gif2 ucf101 gif1 ucf101 gif2

Note that the code at this link is deprecated.

Getting Started

To compile cudamat library you need to modify CUDA_ROOT in cudamat/Makefile to the relevant cuda root path.

The libraries you need to install are:

  • h5py (HDF5 (>= 1.8.11))
  • google.protobuf (Protocol Buffers (>= 2.5.0))
  • numpy
  • matplotlib

Next compile .proto file by calling

protoc -I=./ --python_out=./ config.proto

Depending on the task, you would need to download the following dataset files. These can be obtained by running:

wget http://www.cs.toronto.edu/~emansim/datasets/mnist.h5
wget http://www.cs.toronto.edu/~emansim/datasets/bouncing_mnist_test.npy
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_patches.npy
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_patches.npy
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_features.h5
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_labels.txt
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_num_frames.txt
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_features.h5
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_labels.txt
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_num_frames.txt

Note to Toronto users: You don't need to download any files, as they are available in my gobi3 repository and are already set up.

Bouncing (Moving) MNIST dataset

To train a sample model on this dataset you need to set correct data_file in datasets/bouncing_mnist_valid.pbtxt and then run (you may need to change the board id of gpu):

python lstm_combo.py models/lstm_combo_1layer_mnist.pbtxt datasets/bouncing_mnist.pbtxt datasets/bouncing_mnist_valid.pbtxt 1

After training the model and setting correct path to trained weights in models/lstm_combo_1layer_mnist_pretrained.pbtxt, you can visualize the sample reconstruction and future prediction results of the pretrained model by running:

python display_results.py models/lstm_combo_1layer_mnist_pretrained.pbtxt datasets/bouncing_mnist_valid.pbtxt 1

Below are the sample results, where first image is reference image and second image is prediction of the model. Note that first ten frames are reconstructions, whereas the last ten frames are future predictions.

original recon

Video patches

Due to the size constraints, I only managed to upload a small sample dataset of UCF-101 patches. The trained model is overfitting, so this example is just meant for instructional purposes. The setup is the same as in Bouncing MNIST dataset.

To train the model run:

python lstm_combo.py models/lstm_combo_1layer_ucf101_patches.pbtxt datasets/ucf101_patches.pbtxt datasets/ucf101_patches_valid.pbtxt 1

To see the results run:

python display_results.py models/lstm_combo_1layer_ucf101_pretrained.pbtxt datasets/ucf101_patches_valid.pbtxt 1

original recon

Classification using high level representations ('percepts') of video frames

Again, as in the case of UCF-101 patches, I was able to upload a very small subset of fc6 features of video frames extracted using VGG network. To train the classifier run:

python lstm_classifier.py models/lstm_classifier_1layer_ucf101_features.pbtxt datasets/ucf101_features.pbtxt datasets/ucf101_features_valid.pbtxt 1

Reference

If you found this code or our paper useful, please consider citing the following paper:

@inproceedings{srivastava15_unsup_video,
  author    = {Nitish Srivastava and Elman Mansimov and Ruslan Salakhutdinov},
  title     = {Unsupervised Learning of Video Representations using {LSTM}s},
  booktitle = {ICML},
  year      = {2015}
}
Owner
Elman Mansimov
Applied Scientist @amazon-research
Elman Mansimov
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022