To SMOTE, or not to SMOTE?

Overview

To SMOTE, or not to SMOTE?

This package includes the code required to repeat the experiments in the paper and to analyze the results.

To SMOTE, or not to SMOTE?

Yotam Elor and Hadar Averbuch-Elor

Installation

# Create a new conda environment and activate it
conda create --name to-SMOTE-or-not -y python=3.7
conda activate to-SMOTE-or-not
# Install dependencies
pip install -r requirements.txt

Running experiments

The data is not included with this package. See an example of running a single experiment with a dataset from imblanaced-learn

# Load the data
import pandas as pd
import numpy as np
from imblearn.datasets import fetch_datasets
data = fetch_datasets()["mammography"]
x = pd.DataFrame(data["data"])
y = np.array(data["target"]).reshape((-1, 1))

# Run the experiment
from experiment import experiment
from classifiers import CLASSIFIER_HPS
from oversamplers import OVERSAMPLER_HPS
results = experiment(
    x=x,
    y=y,
    oversampler={
        "type": "smote",
        "ratio": 0.4,
        "params": OVERSAMPLER_HPS["smote"][0],
    },
    classifier={
        "type": "cat",  # Catboost
        "params": CLASSIFIER_HPS["cat"][0]
    },
    seed=0,
    normalize=False,
    clean_early_stopping=False,
    consistent=True,
    repeats=1
)

# Print the results nicely
import json
print(json.dumps(results, indent=4))

To run all the experiments in our study, wrap the above in loops, for example

for dataset in datasets:
    x, y = load_dataset(dataset)  # this functionality is not provided
    for seed in range(7):
        for classifier, classifier_hp_configs in CLASSIFIER_HPS.items():
            for classifier_hp in classifier_hp_configs:
                for oversampler, oversampler_hp_configs in OVERSAMPLER_HPS.items():
                    for oversampler_hp in oversampler_hp_configs:
                        for ratio in [0.1, 0.2, 0.3, 0.4, 0.5]:
                            results = experiment(
                                x=x,
                                y=y,
                                oversampler={
                                    "type": oversampler,
                                    "ratio": ratio,
                                    "params": oversampler_hp,
                                },
                                classifier={
                                    "type": classifier,
                                    "params": classifier_hp
                                },
                                seed=seed,
                                normalize=...,
                                clean_early_stopping=...,
                                consistent=...,
                                repeats=...
                            )

Analyze

Read the results from the compressed csv file. As the results file is large, it is tracked using git-lfs. You might need to download it manually or install git-lfs.

import os
import pandas as pd
data_path = os.path.join(os.path.dirname(__file__), "../data/results.gz")
df = pd.read_csv(data_path)

Drop nans and filter experiments with consistent classifiers, no normalization and a single validation fold

df = df.dropna()
df = df[
    (df["consistent"] == True)
    & (df["normalize"] == False)
    & (df["clean_early_stopping"] == False)
    & (df["repeats"] == 1)
]

Select the best HP configurations according to AUC validation scores. opt_metric is the key used to select the best configuration. For example, for a-priori HPs use opt_metric="test.roc_auc" and for validation-HPs use opt_metric="validation.roc_auc". Additionaly calculate average score and rank

from analyze import filter_optimal_hps
df = filter_optimal_hps(
    df, opt_metric="validation.roc_auc", output_metrics=["test.roc_auc"]
)
print(df)

Plot the results

from analyze import avg_plots
avg_plots(df, "test.roc_auc")

Citation

@misc{elor2022smote,
    title={To SMOTE, or not to SMOTE?}, 
    author={Yotam Elor and Hadar Averbuch-Elor},
    year={2022},
    eprint={2201.08528},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

Owner
Amazon Web Services
Amazon Web Services
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022