Pytorch cuda extension of grid_sample1d

Overview

Grid Sample 1d

pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The forward pass is 2~3x faster than pytorch grid sample.

setup

  • Pytorch == 1.7.1
  • CUDA == 10.1

Other versions of pytorch or cuda may work but I haven't test.

you can choose to manually build it or use JIT

Build

python setup.py install

JIT

comment import grid_sample1d_cuda as grid_sample1d in op.py

uncomment

grid_sample1d = load(
    'grid_sample1d_cuda', ['grid_sample1d_cuda.cpp', 'grid_sample1d_cuda_kernel.cu'], verbose=True)

in op.py

Usage

import torch
from grid_sample1d import GridSample1d

grid_sample1d = GridSample1d(padding_mode=True, align_corners=True)
N = 16
C = 256
L_in = 64
L_out = 128
input = torch.randn((N, C, L_in)).cuda()
grids = torch.randn((N, L_out)).cuda()
output = grid_sample1d(input, grids)

Options are

  • padding_mode: True for border padding, False for zero padding
  • align_corners: same with align_corners in torch.nn.functional.grid_sample

difference

In forward pass, calculation on the channel dim C is parallel, which is serial in torch.nn.functional.grid_sample. Parallel calculation on C may cause round off error in backward. But for now, I found it doesn't influence the forward pass.

Test

Accuracy Test

Since grid sample 1d is a special case of grid sample 2d in most cases (not true when padding_mode & align_corners are both False). I test the accuracy of the implemented grid sample based on torch.nn.functional.grid_sample.

import torch
import torch.nn.functional as F


def gridsample1d_by2d(input, grid, padding_mode, align_corners):
    shape = grid.shape
    input = input.unsqueeze(-1)  # batch_size * C * L_in * 1
    grid = grid.unsqueeze(1)  # batch_size * 1 * L_out
    grid = torch.stack([-torch.ones_like(grid), grid], dim=-1)
    z = F.grid_sample(input, grid, padding_mode=padding_mode, align_corners=align_corners)
    C = input.shape[1]
    out_shape = [shape[0], C, shape[1]]
    z = z.view(*out_shape)  # batch_size * C * L_out
    return z

It is recommended to test on your computer because I only test it on CUDA 10.1 GTX 1080Ti

python test/acc_benchmark.py

Both the forward and the backward results are identical except for align_corners=True, padding_mode=False. It may be caused by round off error when we sum series float numbers in different orders.

Deterministic Test

It is very important to do deterministic test since the associative law is no more applied for the calculation of float numbers on computers.

python test/check_deterministic.py

Note

When padding_mode & align_corners are both False, we cannot regard grid sample 1d as a special case of grid sample 2d in pytorch. I have checked the cuda kernel of grid_sample in Pytorch. When padding_mode & align_corners are both False, the output of torch.nn.functional.grid_sample will be half of the expected. Hope it can be fixed one day.

CPU support

Too lazy to support

speed & memory cost

Here are the speed test results on different size of input

references

Owner
lyricpoem
lyricpoem
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022