Pytorch cuda extension of grid_sample1d

Overview

Grid Sample 1d

pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The forward pass is 2~3x faster than pytorch grid sample.

setup

  • Pytorch == 1.7.1
  • CUDA == 10.1

Other versions of pytorch or cuda may work but I haven't test.

you can choose to manually build it or use JIT

Build

python setup.py install

JIT

comment import grid_sample1d_cuda as grid_sample1d in op.py

uncomment

grid_sample1d = load(
    'grid_sample1d_cuda', ['grid_sample1d_cuda.cpp', 'grid_sample1d_cuda_kernel.cu'], verbose=True)

in op.py

Usage

import torch
from grid_sample1d import GridSample1d

grid_sample1d = GridSample1d(padding_mode=True, align_corners=True)
N = 16
C = 256
L_in = 64
L_out = 128
input = torch.randn((N, C, L_in)).cuda()
grids = torch.randn((N, L_out)).cuda()
output = grid_sample1d(input, grids)

Options are

  • padding_mode: True for border padding, False for zero padding
  • align_corners: same with align_corners in torch.nn.functional.grid_sample

difference

In forward pass, calculation on the channel dim C is parallel, which is serial in torch.nn.functional.grid_sample. Parallel calculation on C may cause round off error in backward. But for now, I found it doesn't influence the forward pass.

Test

Accuracy Test

Since grid sample 1d is a special case of grid sample 2d in most cases (not true when padding_mode & align_corners are both False). I test the accuracy of the implemented grid sample based on torch.nn.functional.grid_sample.

import torch
import torch.nn.functional as F


def gridsample1d_by2d(input, grid, padding_mode, align_corners):
    shape = grid.shape
    input = input.unsqueeze(-1)  # batch_size * C * L_in * 1
    grid = grid.unsqueeze(1)  # batch_size * 1 * L_out
    grid = torch.stack([-torch.ones_like(grid), grid], dim=-1)
    z = F.grid_sample(input, grid, padding_mode=padding_mode, align_corners=align_corners)
    C = input.shape[1]
    out_shape = [shape[0], C, shape[1]]
    z = z.view(*out_shape)  # batch_size * C * L_out
    return z

It is recommended to test on your computer because I only test it on CUDA 10.1 GTX 1080Ti

python test/acc_benchmark.py

Both the forward and the backward results are identical except for align_corners=True, padding_mode=False. It may be caused by round off error when we sum series float numbers in different orders.

Deterministic Test

It is very important to do deterministic test since the associative law is no more applied for the calculation of float numbers on computers.

python test/check_deterministic.py

Note

When padding_mode & align_corners are both False, we cannot regard grid sample 1d as a special case of grid sample 2d in pytorch. I have checked the cuda kernel of grid_sample in Pytorch. When padding_mode & align_corners are both False, the output of torch.nn.functional.grid_sample will be half of the expected. Hope it can be fixed one day.

CPU support

Too lazy to support

speed & memory cost

Here are the speed test results on different size of input

references

Owner
lyricpoem
lyricpoem
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022