Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Overview

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Tweet

Project | Arxiv | YouTube | PWC | PWC

dataset1

Abstract

In recent years, deep learning-based methods have shown promising results in computer vision area. However, a common deep learning model requires a large amount of labeled data, which is labor-intensive to collect and label. What’s more, the model can be ruined due to the domain shift between training data and testing data. Text recognition is a broadly studied field in computer vision and suffers from the same problems noted above due to the diversity of fonts and complicated backgrounds. In this paper, we focus on the text recognition problem and mainly make three contributions toward these problems. First, we collect a multi-source domain adaptation dataset for text recognition, including five different domains with over five million images, which is the first multi-domain text recognition dataset to our best knowledge. Secondly, we propose a new method called Meta Self-Learning, which combines the self-learning method with the meta-learning paradigm and achieves a better recognition result under the scene of multi domain adaptation. Thirdly, extensive experiments are conducted on the dataset to provide a benchmark and also show the effectiveness of our method.

Data Prepare

Download the dataset from here.

Before using the raw data, you need to convert it to lmdb dataset.

python create_lmdb_dataset.py --inputPath data/ --gtFile data/gt.txt --outputPath result/

The data folder should be organized below

data
├── train_label.txt
└── imgs
    ├── 000000001.png
    ├── 000000002.png
    ├── 000000003.png
    └── ...

The format of train_label.txt should be {imagepath}\t{label}\n For example,

imgs/000000001.png Tiredness
imgs/000000002.png kills
imgs/000000003.png A

Requirements

  • Python == 3.7
  • Pytorch == 1.7.0
  • torchvision == 0.8.1
  • Linux or OSX
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN may work with minimal modification, but untested)

Argument

  • --train_data: folder path to training lmdb dataset.
  • --valid_data: folder path to validation lmdb dataset.
  • --select_data: select training data, examples are shown below
  • --batch_ratio: assign ratio for each selected data in the batch.
  • --Transformation: select Transformation module [None | TPS], in our method, we use None only.
  • --FeatureExtraction: select FeatureExtraction module [VGG | RCNN | ResNet], in our method, we use ResNet only.
  • --SequenceModeling: select SequenceModeling module [None | BiLSTM], in our method, we use BiLSTM only.
  • --Prediction: select Prediction module [CTC | Attn], in our method, we use Attn only.
  • --saved_model: path to a pretrained model.
  • --valInterval: iteration interval for validation.
  • --inner_loop: update steps in the meta update, default is 1.
  • --source_num: number of source domains, default is 4.

Get started

  • Install PyTorch and 0.4+ and other dependencies (e.g., torchvision, visdom and dominate).

    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.
  • Clone this repo:

git clone https://github.com/bupt-ai-cz/Meta-SelfLearning.git
cd Meta-SelfLearning

To train the baseline model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python train.py \
    --train_data data/train/ \
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --valInterval 5000

To train the meta_train model for synthetic domain using the pretrained model.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_train.py 
    --train_data data/train/ \ 
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn/ \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4  \
    --valInterval 5000 --inner_loop 1\
    --saved_model saved_models/pretrained.pth 

To train the pseudo-label model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python self_training.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4 \
    --warmup_threshold 28 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 \ 
    --saved_model saved_models/pretrained.pth 

To train the meta self-learning model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_self_learning.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --source_num 4 \
    --warmup_threshold 0 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 --inner_loop 1 \
    --saved_model pretrained_model/pretrained.pth 

Citation

If you use this data for your research, please cite our paper Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark

@article{qiu2021meta,
  title={Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark},
  author={Qiu, Shuhao and Zhu, Chuang and Zhou, Wenli},
  journal={arXiv preprint arXiv:2108.10840},
  year={2021}
}

License

This Dataset is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications, or personal experimentation. Permission is granted to use the data given that you agree to our license terms bellow:

  1. That you include a reference to our Dataset in any work that makes use of the dataset. For research papers, cite our preferred publication as listed on our website; for other media cite our preferred publication as listed on our website or link to the our website.
  2. That you may not use the dataset or any derivative work for commercial purposes as, for example, licensing or selling the data, or using the data with a purpose to procure a commercial gain.

Privacy

Part of the data is constructed based on the processing of existing databases. Part of the data is crawled online or captured by ourselves. Part of the data is newly generated. We prohibit you from using the Datasets in any manner to identify or invade the privacy of any person. If you have any privacy concerns, including to remove your information from the Dataset, please contact us.

Contact

Reference

Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group - email: <a href=[email protected]">
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022