Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Overview

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Tweet

Project | Arxiv | YouTube | PWC | PWC

dataset1

Abstract

In recent years, deep learning-based methods have shown promising results in computer vision area. However, a common deep learning model requires a large amount of labeled data, which is labor-intensive to collect and label. What’s more, the model can be ruined due to the domain shift between training data and testing data. Text recognition is a broadly studied field in computer vision and suffers from the same problems noted above due to the diversity of fonts and complicated backgrounds. In this paper, we focus on the text recognition problem and mainly make three contributions toward these problems. First, we collect a multi-source domain adaptation dataset for text recognition, including five different domains with over five million images, which is the first multi-domain text recognition dataset to our best knowledge. Secondly, we propose a new method called Meta Self-Learning, which combines the self-learning method with the meta-learning paradigm and achieves a better recognition result under the scene of multi domain adaptation. Thirdly, extensive experiments are conducted on the dataset to provide a benchmark and also show the effectiveness of our method.

Data Prepare

Download the dataset from here.

Before using the raw data, you need to convert it to lmdb dataset.

python create_lmdb_dataset.py --inputPath data/ --gtFile data/gt.txt --outputPath result/

The data folder should be organized below

data
├── train_label.txt
└── imgs
    ├── 000000001.png
    ├── 000000002.png
    ├── 000000003.png
    └── ...

The format of train_label.txt should be {imagepath}\t{label}\n For example,

imgs/000000001.png Tiredness
imgs/000000002.png kills
imgs/000000003.png A

Requirements

  • Python == 3.7
  • Pytorch == 1.7.0
  • torchvision == 0.8.1
  • Linux or OSX
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN may work with minimal modification, but untested)

Argument

  • --train_data: folder path to training lmdb dataset.
  • --valid_data: folder path to validation lmdb dataset.
  • --select_data: select training data, examples are shown below
  • --batch_ratio: assign ratio for each selected data in the batch.
  • --Transformation: select Transformation module [None | TPS], in our method, we use None only.
  • --FeatureExtraction: select FeatureExtraction module [VGG | RCNN | ResNet], in our method, we use ResNet only.
  • --SequenceModeling: select SequenceModeling module [None | BiLSTM], in our method, we use BiLSTM only.
  • --Prediction: select Prediction module [CTC | Attn], in our method, we use Attn only.
  • --saved_model: path to a pretrained model.
  • --valInterval: iteration interval for validation.
  • --inner_loop: update steps in the meta update, default is 1.
  • --source_num: number of source domains, default is 4.

Get started

  • Install PyTorch and 0.4+ and other dependencies (e.g., torchvision, visdom and dominate).

    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.
  • Clone this repo:

git clone https://github.com/bupt-ai-cz/Meta-SelfLearning.git
cd Meta-SelfLearning

To train the baseline model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python train.py \
    --train_data data/train/ \
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --valInterval 5000

To train the meta_train model for synthetic domain using the pretrained model.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_train.py 
    --train_data data/train/ \ 
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn/ \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4  \
    --valInterval 5000 --inner_loop 1\
    --saved_model saved_models/pretrained.pth 

To train the pseudo-label model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python self_training.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4 \
    --warmup_threshold 28 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 \ 
    --saved_model saved_models/pretrained.pth 

To train the meta self-learning model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_self_learning.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --source_num 4 \
    --warmup_threshold 0 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 --inner_loop 1 \
    --saved_model pretrained_model/pretrained.pth 

Citation

If you use this data for your research, please cite our paper Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark

@article{qiu2021meta,
  title={Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark},
  author={Qiu, Shuhao and Zhu, Chuang and Zhou, Wenli},
  journal={arXiv preprint arXiv:2108.10840},
  year={2021}
}

License

This Dataset is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications, or personal experimentation. Permission is granted to use the data given that you agree to our license terms bellow:

  1. That you include a reference to our Dataset in any work that makes use of the dataset. For research papers, cite our preferred publication as listed on our website; for other media cite our preferred publication as listed on our website or link to the our website.
  2. That you may not use the dataset or any derivative work for commercial purposes as, for example, licensing or selling the data, or using the data with a purpose to procure a commercial gain.

Privacy

Part of the data is constructed based on the processing of existing databases. Part of the data is crawled online or captured by ourselves. Part of the data is newly generated. We prohibit you from using the Datasets in any manner to identify or invade the privacy of any person. If you have any privacy concerns, including to remove your information from the Dataset, please contact us.

Contact

Reference

Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group - email: <a href=[email protected]">
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
Open source person re-identification library in python

Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da

Tong Xiao 1.3k Jan 01, 2023
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023