Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

Related tags

Deep LearningRSPNet
Overview

RSPNet

Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning"

[Supplementary Materials]

Getting Started

Install Dependencies

All dependencies can be installed using pip:

python -m pip install -r requirements.txt

Our experiments run on Python 3.7 and PyTorch 1.6. Other versions should work but are not tested.

Transcode Videos (Optional)

This step is optional but will increase the data loading speed dramatically.

We decode the videos on the fly while training so we don't need to split frames. This makes disk IO a lot faster but increases CPU usage. This transcode step aims at reducing CPU consumed by decoding by 1) lower video resolution. 2) add more key frames.

To perform transcode, you need to have ffmpeg installed, then run:

python utils/transcode_dataset.py PATH/TO/ORIGIN_VIDEOS PATH/TO/TRANSCODED_VIDEOS

Be warned, this will use all your CPU and will take several hours (on our Intel E5-2630 *2 workstation) to complete.

Prepare Datasets

Your are expected to prepare date for pre-training (Kinetics-400 dataset) and fine-tuning (UCF101, HMDB51 and Something-something-v2 datasets). To let the scripts find datasets on your system, the recommended way is to create symbolic links in ./data directory to the actual path. We found this solution flexible.

The expected directory hierarchy is as follow:

├── data
│   ├── hmdb51
│   │   ├── metafile
│   │   │   ├── brush_hair_test_split1.txt
│   │   │   └── ...
│   │   └── videos
│   │       ├── brush_hair
│   │       │   └── *.avi
│   │       └── ...
│   ├── UCF101
│   │   ├── ucfTrainTestlist
│   │   │   ├── classInd.txt
│   │   │   ├── testlist01.txt
│   │   │   ├── trainlist01.txt
│   │   │   └── ...
│   │   └── UCF-101
│   │       ├── ApplyEyeMakeup
│   │       │   └── *.avi
│   │       └── ...
│   ├── kinetics400
│   │   ├── train_video
│   │   │   ├── answering_questions
│   │   │   │   └── *.mp4
│   │   │   └── ...
│   │   └── val_video
│   │       └── (same as train_video)
│   ├── kinetics100
│   │   └── (same as kinetics400)
│   └── smth-smth-v2
│       ├── 20bn-something-something-v2
│       │   └── *.mp4
│       └── annotations
│           ├── something-something-v2-labels.json
│           ├── something-something-v2-test.json
│           ├── something-something-v2-train.json
│           └── something-something-v2-validation.json
└── ...

Alternatively, you can change the path in config/dataset to match your system.

Build Kinetics-100 dataset (Optional)

Some of our ablation study experiments use the Kinetics-100 dataset for pre-training. This dataset is built by extract 100 classes from Kinetics-400, which has the smallest file size on the train set.

If you have Kinetics-400 available, you can build Kinetics-100 by:

python -m utils.build_kinetics_subset

This script will create symbolic links instead of copy data. It is expected to complete in a minute.

We have included a pre-built one at data/kinetics100_links and created the symbolic link data/kinetics100 that related to it. You need to have data/kinetics400 available at runtime.

Pre-training on Pretext Tasks

Now you have set up the environment. Run the following command to pre-train your models on pretext tasks.

export CUDA_VISIBLE_DEVICES=0,1,2,3
# Architecture: C3D
python pretrain.py -e exps/pretext-c3d -c config/pretrain/c3d.jsonnet
# Architecture: ResNet-18
python pretrain.py -e exps/pretext-resnet18 -c config/pretrain/resnet18.jsonnet
# Architecture: S3D-G
python pretrain.py -e exps/pretext-s3dg -c config/pretrain/s3dg.jsonnet
# Architecture: R(2+1)D
python pretrain.py -e exps/pretext-r2plus1d -c config/pretrain/r2plus1d.jsonnet

You can use kinetics100 dataset for training by editing config/pretrain/moco-train-base.jsonnet (line 13)

Action Recognition

After pre-trained on pretext tasks, these models are fine-tuned to perform action recognition task on UCF101, HMDB51 and Something-something-v2 datasets.

export CUDA_VISIBLE_DEVICES=0,1
# Dataset: UCF101
#     Architecture: C3D [email protected]=76.71%
python finetune.py -c config/finetune/ucf101_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/ucf101-c3d
#     Architecture: ResNet-18 [email protected]=74.33%
python finetune.py -c config/finetune/ucf101_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/ucf101-resnet18
#     Architecture: S3D-G [email protected]=89.9%
python finetune.py -c config/finetune/ucf101_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/ucf101-s3dg
#     Architecture: R(2+1)D [email protected]=81.1%
python finetune.py -c config/finetune/ucf101_r2plus1d.jsonnet \
                   --mc exps/pretext-r2plus1d/model_best.pth.tar \
                   -e exps/ucf101-r2plus1d

# Dataset: HMDB51
#     Architecture: C3D [email protected]=44.58%
python finetune.py -c config/finetune/hmdb51_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/hmdb51-c3d
#     Architecture: ResNet-18 [email protected]=41.83%
python finetune.py -c config/finetune/hmdb51_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/hmdb51-resnet18
#     Architecture: S3D-G [email protected]=59.6%
python finetune.py -c config/finetune/hmdb51_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/hmdb51-s3dg
#     Architecture: R(2+1)D [email protected]=44.6%
python finetune.py -c config/finetune/hmdb51_r2plus1d.jsonnet \
                   --mc exps/pretext-r2plus1d/model_best.pth.tar \
                   -e exps/hmdb51-r2plus1d

# Dataset: Something-something-v2
#     Architecture: C3D [email protected]=47.76%
python finetune.py -c config/finetune/smth_smth_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/smthv2-c3d
#     Architecture: ResNet-18 [email protected]=44.02%
python finetune.py -c config/finetune/smth_smth_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/smthv2-resnet18
#     Architecture: S3D-G [email protected]=55.03%
python finetune.py -c config/finetune/smth_smth_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/smthv2-s3dg

Results and Pre-trained Models

Architecture Pre-trained dataset Pre-training epoch Pre-trained model Acc. on UCF101 Acc. on HMDB51
S3D-G Kinetics-400 1000 Download link 93.7 64.7
S3D-G Kinetics-400 200 Download link 89.9 59.6
R(2+1)D Kinetics-400 200 Download link 81.1 44.6
ResNet-18 Kinetics-400 200 Download link 74.3 41.8
C3D Kinetics-400 200 Download link 76.7 44.6

Video Retrieval

The pretrained model can also be used in searching relevant videos based on the given query video.

export CUDA_VISIBLE_DEVICES=0 # use single GPU 
python retrieval.py -c config/retrieval/ucf101_resnet18.jsonnet \
                    --mc exps/pretext-resnet18/model_best.pth.tar \
                    -e exps/retrieval-resnet18    

The video retrieval result in our paper

Architecture k=1 k=5 k=10 k=20 k=50
C3D 36.0 56.7 66.5 76.3 87.7
ResNet-18 41.1 59.4 68.4 77.8 88.7

Visualization

We further visualize the region of interest (RoI) that contributes most to the similarity score using the class activation map (CAM) technique.

export CUDA_VISIBLE_DEVICES=0,1
python visualization.py -c config/pretrain/s3dg.jsonnet \
                        --load-model exps/pretext-s3dg/model_best.pth.tar \
                        -e exps/visual-s3dg \
                        -x '{batch_size: 1}'

The cam visualization results will be plotted in png files like

Troubleshoot

  • DECORDError cannot find video stream with wanted index: -1

    Some video from Kinetics dataset does not contain a valid video stream for some unknown reason. To filter them out, run python utils/verify_video.py PATH/TO/VIDEOS, then copy the output to the blacklist config in config/dataset/kinetics{400,100}.libsonnet. You need to have ffmpeg installed.

Citation

Please cite the following paper if you feel RSPNet useful to your research

@InProceedings{chen2020RSPNet,
author = {Peihao Chen, Deng Huang, Dongliang He, Xiang Long, Runhao Zeng, Shilei Wen, Mingkui Tan, and Chuang Gan},
title = {RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning},
booktitle = {The AAAI Conference on Artificial Intelligence (AAAI)},
year = {2021}
}

Contact

For any question, please file an issue or contact

Peihao Chen: [email protected]
Deng Huang: [email protected]
Comments
  • r(2+1) d -18 pretrained model not fully reproducible

    r(2+1) d -18 pretrained model not fully reproducible

    Hi, I finetuned the given pre-trained r(2+1)d model on ucf-101 using the given finetuning code. It only achieves (76 -77%) accuracy. Can you confirm if the given model is the correct one. I use the same setup as mentioned in the readme.

    opened by fmthoker 3
  • framework image

    framework image

    hello, thank you for your great work. it's so smart idea!

    can you explain about framework image? i understand about RSP task, A-VID task is learned in 1 iteration. i think that it means 'anchor is same'. and i saw the algorithm, just sampling K clips in video V\v+, however, in paper fig 2. two clips in video, 1x clip and 2x clip 's features(green color) are going to g_a header and do contrastive learning. i think about you want to show us randomly selected speed.... is right? in real experiment, just c_i, c_j, {c_n}(K) clips in there? not 2K?

    thank you

    opened by youwantsy 2
  • The pre-training model of s3d-g model based on Imagenet and dynamics-400 data set?

    The pre-training model of s3d-g model based on Imagenet and dynamics-400 data set?

    Where can I download the pre training model of s3d-g model based on Imagenet and dynamics-400 dataset? Or can you upload it to this repository? 请问哪里可以下载到基于ImageNet和Kinetics-400数据集的S3D-G模型的预训练模型?或者请问作者可以上传一下公开吗?

    opened by LiangSiyv 2
  • Question about computational resources

    Question about computational resources

    Hi, Thanks for your wonderful paper and code. I want to know the computational resources of your experiments. 1. What and how many GPUs you use? 2. The training time of pretraining on K400 for 200 epochs. 3. The training time of finetuning on UCF101, HMDB51, Something-V2, respectively. Looking forward to your reply. Thanks.

    opened by wjn922 2
  • 'No configuration setting found for key force_n_crop'

    'No configuration setting found for key force_n_crop'

    I downloaded your S3D-G pre-trained model for my action recognition task on UCF101 but I keep getting this error:

    argument type: <class 'str'> Setting ulimit -n 8192 world_size=1 Using dist_url=tcp://127.0.0.1:36879 Local Rank: 0 2021-12-30 07:31:39,148|INFO |Args = Args(parser=None, config='config/finetune/ucf101_s3dg.jsonnet', ext_config=[], debug=False, experiment_dir=PosixPath('exps/ucf101-s3dg'), _run_dir=PosixPath('exps/ucf101-s3dg/run_2_20211230_073138'), load_checkpoint=None, load_model=None, validate=False, moco_checkpoint='exps/pretext-s3dg/model_best_s3dg_200epoch.pth.tar', seed=None, world_size=1, _continue=False, no_scale_lr=False) 2021-12-30 07:31:39,149|INFO |cudnn.benchmark = True 2021-12-30 07:31:39,278|INFO |Config = batch_size = 4 dataset { annotation_path = "data/UCF101/ucfTrainTestlist" fold = 1 mean = [ 0.485 0.456 0.406 ] name = "ucf101" num_classes = 101 root = "data/UCF101/UCF-101" std = [ 0.229 0.224 0.225 ] } final_validate { batch_size = 4 } log_interval = 10 method = "from-scratch" model { arch = "s3dg" } model_type = "multitask" num_epochs = 50 num_workers = 8 optimizer { dampening = 0 lr = 0.005 milestones = [ 50 100 150 ] momentum = 0.9 nesterov = false patience = 10 schedule = "cosine" weight_decay = 0.0001 } spatial_transforms { color_jitter { brightness = 0 contrast = 0 hue = 0 saturation = 0 } crop_area { max = 1 min = 0.25 } gray_scale = 0 size = 224 } temporal_transforms { frame_rate = 25 size = 64 strides = [ { stride = 1 weight = 1 } ] validate { final_n_crop = 10 n_crop = 1 stride = 1 } } validate { batch_size = 4 } 2021-12-30 07:31:39,282|INFO |Using global get_model_class({'arch': 's3dg'}) 2021-12-30 07:31:39,283|INFO |Using MultiTask Wrapper 2021-12-30 07:31:39,283|WARNING |<class 'moco.split_wrapper.MultiTaskWrapper'> using groups: 1 2021-12-30 07:31:39,383|INFO |Found fc: fc with in_features: 1024 2021-12-30 07:31:42,488|INFO |Building Dataset: VID: False, Split=train 2021-12-30 07:31:42,488|INFO |Temporal transform type: clip Traceback (most recent call last): File "finetune.py", line 502, in main() File "finetune.py", line 498, in main mp.spawn(main_worker, args=(args, dist_url,), nprocs=args.world_size) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 200, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method='spawn') File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 158, in start_processes while not context.join(): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 119, in join raise Exception(msg) Exception:

    -- Process 0 terminated with the following error: Traceback (most recent call last): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 20, in _wrap fn(i, *args) File "/home/ubuntu/RSPNet/finetune.py", line 452, in main_worker engine = Engine(args, cfg, local_rank=local_rank) File "/home/ubuntu/RSPNet/finetune.py", line 171, in init self.train_loader = self.data_loader_factory.build( File "/home/ubuntu/RSPNet/datasets/classification/init.py", line 81, in build temporal_transform = self.get_temporal_transform(split) File "/home/ubuntu/RSPNet/datasets/classification/init.py", line 276, in get_temporal_transform if tt_cfg.get_bool("force_n_crop"): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 310, in get_bool string_value = self.get_string(key, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 221, in get_string value = self.get(key, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 209, in get return self._get(ConfigTree.parse_key(key), 0, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 151, in _get raise ConfigMissingException(u"No configuration setting found for key {key}".format(key='.'.join(key_path[:key_index + 1]))) pyhocon.exceptions.ConfigMissingException: 'No configuration setting found for key force_n_crop'

    opened by aloma85 0
Releases(pretrained_model)
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023