This is the face keypoint train code of project face-detection-project

Overview

face-key-point-pytorch

Python Python torch

1. Data structure

The structure of landmarks_jpg is like below:

|--landmarks_jpg
|----AFW
|------AFW_134212_1_0.jpg
|------AFW_134212_1_1.jpg
|----HELEN
|-------HELEN_232194_1_0.jpg
|-------HELEN_232194_1_1.jpg
|----IBUG
|------IBUG_image_003_1_0.jpg
|------IBUG_image_003_1_1.jpg
|----LFPW
|------LFPW_image_test_0001_0.jpg
|------LFPW_image_test_0001_1.jpg

The structure of landmarks_label is like below:

|--landmarks_label
|----AFW
|------AFW_134212_1_0_pts
|------AFW_134212_1_1_pts
|----HELEN
|-------HELEN_232194_1_0_pts
|-------HELEN_232194_1_1_pts
|----IBUG
|------IBUG_image_003_1_0_pts
|------IBUG_image_003_1_1_pts
|----LFPW
|------LFPW_image_test_0001_0_pts
|------LFPW_image_test_0001_1_pts

You can download it by yourself. You can also download the data from the cloud drive:

name link
landmarks_jpg.zip https://pan.baidu.com/s/1AJKpa0ac-6ZPWBASiMv87Q code: nujr
landmarks_label.zip https://pan.baidu.com/s/1wBAZMFkNQS6R6KLkRl6ktw code: zgl0

2. how to train

First, install the third-party package:

pip install -r requirements.txt

Then just simply run the below command:

python3 train.py

if you want to use the pretrained models, you can revise the below code as you need:

load_pretrain_model = False
model_dir=r".\pretrain_models\face-keypoint-vgg16-0.pth"
if load_pretrain_model:
    checkpoint = torch.load(model_dir)
    net.load_state_dict(checkpoint)

3. how to test

Revise the test file name in predict.py and then run the below command:

python3 predict.py
Owner
I‘m X
I‘m X
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022