A multilingual version of MS MARCO passage ranking dataset

Related tags

Deep LearningmMARCO
Overview

mMARCO

A multilingual version of MS MARCO passage ranking dataset

This repository presents a neural machine translation-based method for translating the MS MARCO passage ranking dataset. The code available here is the same used in our paper mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset.

Translated Datasets

As described in our work, we made available 8 translated versions of MS MARCO passage ranking dataset. The translated passages collection and the queries set (training and validation) are available at:

Released Model Checkpoints

Our available fine-tuned models are:

Model Description [email protected]*
ptT5-base-pt-msmarco a PTT5 model fine-tuned on Portuguese MS MARCO 0.188
ptT5-base-en-pt-msmarco a PTT5 model fine-tuned on English and Portuguese MS MARCO 0.343
mT5-base-en-pt-msmarco a mT5 model fine-tuned on both English and Portuguese MS MARCO 0.375
mT5-base-multi-msmarco a mT5 model fine-tuned on mMARCO 0.366
mMiniLM-pt-msmarco a mMiniLM model fine-tuned on Portuguese MS MARCO -
mMiniLM-en-pt-msmarco a mMiniLM model fine-tuned on both English and Portuguese MS MARCO 0.375
mMiniLM-multi-msmarco a mMiniLM model fine-tuned on mMARCO 0.363

* [email protected] on English MS MARCO

Dataset

We translate MS MARCO passage ranking dataset, a large-scale IR dataset comprising more than half million anonymized questions that were sampled from Bing's search query logs.

Translation Model

To translate the MS MARCO dataset, we use MarianNMT an open-source neural machine translation framework originally written in C++ for fast training and translation. The Language Technology Research Group at the University of Helsinki made available more than a thousand language pairs for translation, supported by HuggingFace framework.

How To Translate

In order to allow other users to translate the MS MARCO passage ranking dataset to other languages (or a dataset of your own will), we provide the translate.py script. This script expects a .tsv file, in which each line follows a document_id \t document_text format.

python translate.py --model_name_or_path Helsinki-NLP/opus-mt-{src}-{tgt} --target_language tgt_code--input_file collection.tsv --output_dir translated_data/

After translating, it is necessary to reassemble the file, as the documents were split into sentences.

python create_translated_collection.py --input_file translated_data/translated_file --output_file translated_{tgt}_collection

Translating the entire passages collection of MS MARCO took about 80 hours using a Tesla V100.

How to Cite

If you extend or use this work, please cite the paper where it was introduced:

@misc{bonifacio2021mmarco,
      title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, 
      author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
      year={2021},
      eprint={2108.13897},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
๐Ÿ”… Shapash makes Machine Learning models transparent and understandable by everyone

๐ŸŽ‰ What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Donnรฉes Une base dโ€™images contient 490 images pour lโ€™apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prรฉtrait

Achraf Rahouti 3 Nov 30, 2021
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
NumPy๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. (์ž๋™ ๋ฏธ๋ถ„ ์ง€์›)

Deep Learning Library only using NumPy ๋ณธ ๋ ˆํฌ์ง€ํ† ๋ฆฌ๋Š” NumPy ๋งŒ์œผ๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„์ด ๊ตฌํ˜„๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„ ์ž๋™ ๋ฏธ๋ถ„์€ ๋ฏธ๋ถ„์„ ์ž๋™์œผ๋กœ ๊ณ„์‚ฐํ•ด์ฃผ๋Š” ๊ธฐ๋Šฅ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ์ž๋™ ๋ฏธ๋ถ„์„ ํ™œ์šฉํ•ด ์—ญ์ „ํŒŒ

์กฐ์ค€ํฌ 17 Aug 16, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023