Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

Related tags

Deep LearningDKPNet
Overview

DKPNet

ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting

Baseline of DKPNet is available.

Currently, only code of DKPNet-baseline is released.

MSE vs RMSE

In fact, MSE in our paper is equivalent to RMSE in academic papers. Please use the word RMSE instead of MSE when refering to the corresponding numerical values in our paper. We are sorry for the mistake and can do nothing to corret it after the camera-ready version deadline.

Datasets Preparation

Download the datasets ShanghaiTech A, ShanghaiTech B, UCF-QNRF and NWPU Then generate the density maps via generate_density_map_perfect_names_SHAB_QNRF_NWPU_JHU.py. After that, create a folder named JSTL_large_4_dataset, and directly copy all the processed data in JSTL_large_4_dataset.

The tree of the folder should be:

`DATASET` is `SHA`, `SHB`, `QNRF_large` or `NWPU_large`.

-JSTL_large_dataset
   -den
       -test
            -Npy files with the name of DATASET_img_xxx.npy, which logs the info of density maps.
       -train
            -Npy files with the name of DATASET_img_xxx.npy, which logs the info of density maps.
   -ori
       -test_data
            -ground_truth
                 -MAT files with the name of DATASET_img_xxx.mat, which logs the original dot annotations.
            -images
                 -JPG files with the name of DATASET_img_xxx.mat, which logs the original image files.
       -train_data
            -ground_truth
                 -MAT files with the name of DATASET_img_xxx.mat, which logs the original dot annotations.
            -images
                 -JPG files with the name of DATASET_img_xxx.mat, which logs the original image files.

Download the pretrained hrnet model HRNet-W40-C from the link https://github.com/HRNet/HRNet-Image-Classification and put it directly in the root path of the repository. %

Train

sh run_JSTL.sh

Training notes

There are two types of training scripts: train_fast and train_slow. The main differences between them exist in the evaluation procedure. In train_slow, the test images are processed in the main GPU, making the whole training very slow. As the sizes of test images vary largely with each other (the maximum size / the minimun size equals up to 5x !), making the batch size of evaluation can only be 1 on a single GPU. From our observation, the bottleneck lies in the evaluation stage (Maybe 10x computation time longer than the training time), it is not meaningful enough if you train the whole dataset with more GPUs as long as the evaluation processing is still on a single GPU. To this end, we manage to evaluate two images on two GPUs at the same time, as what train_fast does. We think two GPUs are enough for training the whole dataset in the affordable time (~2 days).

It is notable that the batch size of training should be no smaller than 32, or the performance may degrade to some extent.

Test

Download the pretrained model via

bash download_models.sh

And put the model into folder ./output/HRNet_relu_aspp/JSTL_large_4/

python test.py

Citation

If you find our work useful or our work gives you any insights, please cite:

@inproceedings{chen2021variational,
  title = {Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting},
  author = {Chen, Binghui and Yan, Zhaoyi and Li, Ke and Li, Pengyu and Wang, Biao and Zuo, Wangmeng and Zhang, Lei}
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year = {2021}
}
Owner
Harbin Institute of Technology (HIT)
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022