Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

Related tags

Deep LearningDKPNet
Overview

DKPNet

ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting

Baseline of DKPNet is available.

Currently, only code of DKPNet-baseline is released.

MSE vs RMSE

In fact, MSE in our paper is equivalent to RMSE in academic papers. Please use the word RMSE instead of MSE when refering to the corresponding numerical values in our paper. We are sorry for the mistake and can do nothing to corret it after the camera-ready version deadline.

Datasets Preparation

Download the datasets ShanghaiTech A, ShanghaiTech B, UCF-QNRF and NWPU Then generate the density maps via generate_density_map_perfect_names_SHAB_QNRF_NWPU_JHU.py. After that, create a folder named JSTL_large_4_dataset, and directly copy all the processed data in JSTL_large_4_dataset.

The tree of the folder should be:

`DATASET` is `SHA`, `SHB`, `QNRF_large` or `NWPU_large`.

-JSTL_large_dataset
   -den
       -test
            -Npy files with the name of DATASET_img_xxx.npy, which logs the info of density maps.
       -train
            -Npy files with the name of DATASET_img_xxx.npy, which logs the info of density maps.
   -ori
       -test_data
            -ground_truth
                 -MAT files with the name of DATASET_img_xxx.mat, which logs the original dot annotations.
            -images
                 -JPG files with the name of DATASET_img_xxx.mat, which logs the original image files.
       -train_data
            -ground_truth
                 -MAT files with the name of DATASET_img_xxx.mat, which logs the original dot annotations.
            -images
                 -JPG files with the name of DATASET_img_xxx.mat, which logs the original image files.

Download the pretrained hrnet model HRNet-W40-C from the link https://github.com/HRNet/HRNet-Image-Classification and put it directly in the root path of the repository. %

Train

sh run_JSTL.sh

Training notes

There are two types of training scripts: train_fast and train_slow. The main differences between them exist in the evaluation procedure. In train_slow, the test images are processed in the main GPU, making the whole training very slow. As the sizes of test images vary largely with each other (the maximum size / the minimun size equals up to 5x !), making the batch size of evaluation can only be 1 on a single GPU. From our observation, the bottleneck lies in the evaluation stage (Maybe 10x computation time longer than the training time), it is not meaningful enough if you train the whole dataset with more GPUs as long as the evaluation processing is still on a single GPU. To this end, we manage to evaluate two images on two GPUs at the same time, as what train_fast does. We think two GPUs are enough for training the whole dataset in the affordable time (~2 days).

It is notable that the batch size of training should be no smaller than 32, or the performance may degrade to some extent.

Test

Download the pretrained model via

bash download_models.sh

And put the model into folder ./output/HRNet_relu_aspp/JSTL_large_4/

python test.py

Citation

If you find our work useful or our work gives you any insights, please cite:

@inproceedings{chen2021variational,
  title = {Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting},
  author = {Chen, Binghui and Yan, Zhaoyi and Li, Ke and Li, Pengyu and Wang, Biao and Zuo, Wangmeng and Zhang, Lei}
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year = {2021}
}
Owner
Harbin Institute of Technology (HIT)
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022