An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

Overview

Deep BCI SW ver. 1.0 is released.

An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

Web site: http://deepbci.korea.ac.kr/

We provide detailed information in each forder and every function.

  1. 'Intelligent_BCI': contains deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition.
  • Domain Adversarial NN for BCI: functions related to domaon adversarial neural networks
  • EEG based Meta RL Classifier: functions related to model-based reinforcement learning
  • GRU based Large Size EEG Classifier: data and functions relaated to gated recurrent unit
  • etc
  1. 'Ambulatory_BCI': contains general brain-computer interface-related functions that enable high-performance intent recognition in ambulatory environment
  • Channel Selection Method based on Relevance Score: functions related to electrode selection method by evaluating electrode's contribution to motor imagery based on relevance score and CNNs
  • Correlation optimized using rotation matrix: functions related to cognitive imagery analysis using correlation feature
  • SSVEP decoding in ambulatory envieonment using CNN: functions related to decoding scalp- and ear-EEG in ambulatory environment
  • etc
  1. 'Cognitive_BCI': contains cognitive state-related function that enable to estimaate the cognitive states from multi-modality and user-custermized BCI
  • multi-threshold graph metrics using a range of critiera: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat
  • EEG_Authentication_Program: identifying individuals based on resting-state EEG
  • Ear_EEG_Drowsiness_Detection: identifying individuals based on resting-state EEG using convolutional neural network
  • etc
  1. 'Zero-Training_BCI': contains zero-training brain-computer interface-related functions that enable to minimize additional training
  • ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event Related Potential (ERP) analysis including feature extraction, classification, and visualization
  • SSVEP_based_Mind_Mole_Catching: functions allowing users to play mole cathcing game using their brain activity on single/two-player mode
  • SSVEP_based_BCI_speller: functions related to SSVEP-based speller containing nine classes
  • etc

Acknowledgement: This project was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (No. 2017-0-00451, Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

You might also like...
 Source code for our paper
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

A repository that finds a person who looks like you by using face recognition technology.
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Comments
Releases(Deep-BCI)
  • Deep-BCI(Dec 21, 2022)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function. The following items were updated in Deep BCI SW ver. 3.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning
1.2 CNN_Based_Motor_Imagery_Intention_Classifier 1.2 EEG_Decoder_for_PE 1.3 Inter_Subject_Contrastive_Learning_for_EEG 1.4 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI & Intuitive_BCI 2.1 Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1.1 Channel Selection Method based on Relevance Score 2.1.2 Codes_for_Mobile_BCI_Dataset 2.1.3 Motor_imagery_on_treadmill 2.1.4 frequency_optimized_local_region_CSP 2.2 Intuitive_BCI: contains general brain-computer interface-related functions that enable high-performance intuitive BCI system 2.2.1 Attention-based_spatio-temporal-spectral_feature_learning_for_subject-specific_EEG_classification 2.2.2 Imagined Speech Classification 2.2.3 Phoneme-level Speech Classification 2.2.4 Speaker_Identification 2.2.5 Transfer Learning for Imagined Speech

    3. Cognitive_BCI: contains the cognitive state-related function that enables to estimate of the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat 3.1 Changes in Resting-state EEG by Working Memory Process 3.2 Detection_Micro-sleep_Using_Transfer_Learning 3.3 EEG_Feature_Fusion 3.4 EEG_ICA_Pipeline_Classifier_Comparison_Tool 3.5 Ear_EEG_Biosignal 3.6 Hybrid_EEG&NIRS_concatenate_CNN 3.7 Multi-modal_Awareness_Status_Monitoring 3.8 NIRS_Channel_Selection_Program 3.9 Prediction_Individual_Anesthetic_Sensitivity 3.10 Prediction_Long-term_Memory_Based_on_Deep_Learning 3.11 Sleep Classification For Sleep Inducing System 3.12 Sleep_Inertia_Analysis_Using_EEG_data 3.13 Sleep_Stage_Classification_Using_EEG

    4. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training 4.1 MI_Analysis_based_on_ML 4.2 SSVEP_based_BCI_speller 4.3 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
    Source.code.zip(1317.45 MB)
  • DeepBCI(Dec 28, 2021)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function.

    The following items were updated in Deep BCI SW ver. 2.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning 
1.2 CNN_Based_Motor_Imagery_Intention_Classifier
 1.3 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1 Ambulatory_BCI 
2.2 Intuitive_BCI

    3. Cognitive_BCI': contains the cognitive state-related function that enables to estimate the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat

    3.1 Detection_Micro-sleep_Using_Transfer_Learning
 3.2 Prediction_Individual_Anesthetic_Sensitivity 
3.3 Prediction_Long-term_Memory_Based_on_Deep_Learning 
3.4 Sleep_Stage_Classification_Using_EEG
3.5 EEG_Feature_Fusion
 3.6 Ear_EEG_Biosignal 
3.7 Hybrid_EEG&NIRS_concatenate_CNN 
3.8 Multi-modal_Awareness_Status_Monitoring 
3.9 NIRS_Channel_Selection_Program

    1. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training
ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event-Related Potential (ERP) analysis including feature extraction, classification, and visualization 4.1 SSVEP_based_BCI_speller
 4.2 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
Owner
deepbci
deepbci
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022