An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

Overview

Deep BCI SW ver. 1.0 is released.

An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

Web site: http://deepbci.korea.ac.kr/

We provide detailed information in each forder and every function.

  1. 'Intelligent_BCI': contains deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition.
  • Domain Adversarial NN for BCI: functions related to domaon adversarial neural networks
  • EEG based Meta RL Classifier: functions related to model-based reinforcement learning
  • GRU based Large Size EEG Classifier: data and functions relaated to gated recurrent unit
  • etc
  1. 'Ambulatory_BCI': contains general brain-computer interface-related functions that enable high-performance intent recognition in ambulatory environment
  • Channel Selection Method based on Relevance Score: functions related to electrode selection method by evaluating electrode's contribution to motor imagery based on relevance score and CNNs
  • Correlation optimized using rotation matrix: functions related to cognitive imagery analysis using correlation feature
  • SSVEP decoding in ambulatory envieonment using CNN: functions related to decoding scalp- and ear-EEG in ambulatory environment
  • etc
  1. 'Cognitive_BCI': contains cognitive state-related function that enable to estimaate the cognitive states from multi-modality and user-custermized BCI
  • multi-threshold graph metrics using a range of critiera: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat
  • EEG_Authentication_Program: identifying individuals based on resting-state EEG
  • Ear_EEG_Drowsiness_Detection: identifying individuals based on resting-state EEG using convolutional neural network
  • etc
  1. 'Zero-Training_BCI': contains zero-training brain-computer interface-related functions that enable to minimize additional training
  • ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event Related Potential (ERP) analysis including feature extraction, classification, and visualization
  • SSVEP_based_Mind_Mole_Catching: functions allowing users to play mole cathcing game using their brain activity on single/two-player mode
  • SSVEP_based_BCI_speller: functions related to SSVEP-based speller containing nine classes
  • etc

Acknowledgement: This project was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (No. 2017-0-00451, Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

You might also like...
 Source code for our paper
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

A repository that finds a person who looks like you by using face recognition technology.
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Comments
Releases(Deep-BCI)
  • Deep-BCI(Dec 21, 2022)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function. The following items were updated in Deep BCI SW ver. 3.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning
1.2 CNN_Based_Motor_Imagery_Intention_Classifier 1.2 EEG_Decoder_for_PE 1.3 Inter_Subject_Contrastive_Learning_for_EEG 1.4 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI & Intuitive_BCI 2.1 Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1.1 Channel Selection Method based on Relevance Score 2.1.2 Codes_for_Mobile_BCI_Dataset 2.1.3 Motor_imagery_on_treadmill 2.1.4 frequency_optimized_local_region_CSP 2.2 Intuitive_BCI: contains general brain-computer interface-related functions that enable high-performance intuitive BCI system 2.2.1 Attention-based_spatio-temporal-spectral_feature_learning_for_subject-specific_EEG_classification 2.2.2 Imagined Speech Classification 2.2.3 Phoneme-level Speech Classification 2.2.4 Speaker_Identification 2.2.5 Transfer Learning for Imagined Speech

    3. Cognitive_BCI: contains the cognitive state-related function that enables to estimate of the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat 3.1 Changes in Resting-state EEG by Working Memory Process 3.2 Detection_Micro-sleep_Using_Transfer_Learning 3.3 EEG_Feature_Fusion 3.4 EEG_ICA_Pipeline_Classifier_Comparison_Tool 3.5 Ear_EEG_Biosignal 3.6 Hybrid_EEG&NIRS_concatenate_CNN 3.7 Multi-modal_Awareness_Status_Monitoring 3.8 NIRS_Channel_Selection_Program 3.9 Prediction_Individual_Anesthetic_Sensitivity 3.10 Prediction_Long-term_Memory_Based_on_Deep_Learning 3.11 Sleep Classification For Sleep Inducing System 3.12 Sleep_Inertia_Analysis_Using_EEG_data 3.13 Sleep_Stage_Classification_Using_EEG

    4. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training 4.1 MI_Analysis_based_on_ML 4.2 SSVEP_based_BCI_speller 4.3 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
    Source.code.zip(1317.45 MB)
  • DeepBCI(Dec 28, 2021)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function.

    The following items were updated in Deep BCI SW ver. 2.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning 
1.2 CNN_Based_Motor_Imagery_Intention_Classifier
 1.3 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1 Ambulatory_BCI 
2.2 Intuitive_BCI

    3. Cognitive_BCI': contains the cognitive state-related function that enables to estimate the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat

    3.1 Detection_Micro-sleep_Using_Transfer_Learning
 3.2 Prediction_Individual_Anesthetic_Sensitivity 
3.3 Prediction_Long-term_Memory_Based_on_Deep_Learning 
3.4 Sleep_Stage_Classification_Using_EEG
3.5 EEG_Feature_Fusion
 3.6 Ear_EEG_Biosignal 
3.7 Hybrid_EEG&NIRS_concatenate_CNN 
3.8 Multi-modal_Awareness_Status_Monitoring 
3.9 NIRS_Channel_Selection_Program

    1. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training
ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event-Related Potential (ERP) analysis including feature extraction, classification, and visualization 4.1 SSVEP_based_BCI_speller
 4.2 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
Owner
deepbci
deepbci
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022