An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

Overview

Deep BCI SW ver. 1.0 is released.

An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

Web site: http://deepbci.korea.ac.kr/

We provide detailed information in each forder and every function.

  1. 'Intelligent_BCI': contains deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition.
  • Domain Adversarial NN for BCI: functions related to domaon adversarial neural networks
  • EEG based Meta RL Classifier: functions related to model-based reinforcement learning
  • GRU based Large Size EEG Classifier: data and functions relaated to gated recurrent unit
  • etc
  1. 'Ambulatory_BCI': contains general brain-computer interface-related functions that enable high-performance intent recognition in ambulatory environment
  • Channel Selection Method based on Relevance Score: functions related to electrode selection method by evaluating electrode's contribution to motor imagery based on relevance score and CNNs
  • Correlation optimized using rotation matrix: functions related to cognitive imagery analysis using correlation feature
  • SSVEP decoding in ambulatory envieonment using CNN: functions related to decoding scalp- and ear-EEG in ambulatory environment
  • etc
  1. 'Cognitive_BCI': contains cognitive state-related function that enable to estimaate the cognitive states from multi-modality and user-custermized BCI
  • multi-threshold graph metrics using a range of critiera: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat
  • EEG_Authentication_Program: identifying individuals based on resting-state EEG
  • Ear_EEG_Drowsiness_Detection: identifying individuals based on resting-state EEG using convolutional neural network
  • etc
  1. 'Zero-Training_BCI': contains zero-training brain-computer interface-related functions that enable to minimize additional training
  • ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event Related Potential (ERP) analysis including feature extraction, classification, and visualization
  • SSVEP_based_Mind_Mole_Catching: functions allowing users to play mole cathcing game using their brain activity on single/two-player mode
  • SSVEP_based_BCI_speller: functions related to SSVEP-based speller containing nine classes
  • etc

Acknowledgement: This project was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (No. 2017-0-00451, Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

You might also like...
 Source code for our paper
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

A repository that finds a person who looks like you by using face recognition technology.
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Comments
Releases(Deep-BCI)
  • Deep-BCI(Dec 21, 2022)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function. The following items were updated in Deep BCI SW ver. 3.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning
1.2 CNN_Based_Motor_Imagery_Intention_Classifier 1.2 EEG_Decoder_for_PE 1.3 Inter_Subject_Contrastive_Learning_for_EEG 1.4 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI & Intuitive_BCI 2.1 Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1.1 Channel Selection Method based on Relevance Score 2.1.2 Codes_for_Mobile_BCI_Dataset 2.1.3 Motor_imagery_on_treadmill 2.1.4 frequency_optimized_local_region_CSP 2.2 Intuitive_BCI: contains general brain-computer interface-related functions that enable high-performance intuitive BCI system 2.2.1 Attention-based_spatio-temporal-spectral_feature_learning_for_subject-specific_EEG_classification 2.2.2 Imagined Speech Classification 2.2.3 Phoneme-level Speech Classification 2.2.4 Speaker_Identification 2.2.5 Transfer Learning for Imagined Speech

    3. Cognitive_BCI: contains the cognitive state-related function that enables to estimate of the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat 3.1 Changes in Resting-state EEG by Working Memory Process 3.2 Detection_Micro-sleep_Using_Transfer_Learning 3.3 EEG_Feature_Fusion 3.4 EEG_ICA_Pipeline_Classifier_Comparison_Tool 3.5 Ear_EEG_Biosignal 3.6 Hybrid_EEG&NIRS_concatenate_CNN 3.7 Multi-modal_Awareness_Status_Monitoring 3.8 NIRS_Channel_Selection_Program 3.9 Prediction_Individual_Anesthetic_Sensitivity 3.10 Prediction_Long-term_Memory_Based_on_Deep_Learning 3.11 Sleep Classification For Sleep Inducing System 3.12 Sleep_Inertia_Analysis_Using_EEG_data 3.13 Sleep_Stage_Classification_Using_EEG

    4. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training 4.1 MI_Analysis_based_on_ML 4.2 SSVEP_based_BCI_speller 4.3 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
    Source.code.zip(1317.45 MB)
  • DeepBCI(Dec 28, 2021)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function.

    The following items were updated in Deep BCI SW ver. 2.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning 
1.2 CNN_Based_Motor_Imagery_Intention_Classifier
 1.3 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1 Ambulatory_BCI 
2.2 Intuitive_BCI

    3. Cognitive_BCI': contains the cognitive state-related function that enables to estimate the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat

    3.1 Detection_Micro-sleep_Using_Transfer_Learning
 3.2 Prediction_Individual_Anesthetic_Sensitivity 
3.3 Prediction_Long-term_Memory_Based_on_Deep_Learning 
3.4 Sleep_Stage_Classification_Using_EEG
3.5 EEG_Feature_Fusion
 3.6 Ear_EEG_Biosignal 
3.7 Hybrid_EEG&NIRS_concatenate_CNN 
3.8 Multi-modal_Awareness_Status_Monitoring 
3.9 NIRS_Channel_Selection_Program

    1. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training
ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event-Related Potential (ERP) analysis including feature extraction, classification, and visualization 4.1 SSVEP_based_BCI_speller
 4.2 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
Owner
deepbci
deepbci
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022