FewBit — a library for memory efficient training of large neural networks

Overview

FewBit

FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to backward pass and memory footprint reduction for saved tensors between forward and backward passes. Namely, the library provides its own implementation of common activation functions and linear layer since they contribute the most to memory usage in training time. Optimized linear layer saves up to 15-20% memory and optimized activation functions save up to 15-30% of memory usage with negligible loss in performance (see [1][2] for details).

In the table below, one can see comparison of different optimizations applied to RoBERTa model. Compression rate of randomized linear layer is 20% (it uses only 20% of input) and GELU approximation uses only 3 bits.

Task Batch Size GELU Linear Layer Peak Memory, GiB Saving, %
1 MRPC 128 Vanilla Vanilla 11.30 0.0
2 MRPC 128 3-bit Vanilla 9.75 13.8
3 MRPC 128 Vanilla Randomized 9.20 18.6
4 MRPC 128 3-bit Randomized 7.60 32.7

Usage

The library fewbit implements basic activation functions with backward pass optimizations for reducing memory footprint during model training. All activation functions exported by the library can be used as a drop-in replacement for most of standard activation functions implemented in PyTorch. The common pattern is to replace torch.nn with fewbit package qualifier.

import fewbit
import torch as T

model = T.nn.Sequential(
    ...,
    fewbit.GELU(bits=3),  # Use 3-bits GELU approximation.
    ...,
)

In the case of pre-trained models, one can rebuild model with map_module routine which walks through model tree recursively and allows to replace some modules or activation functions. So, user should only use suitable constructor for a new module. As an example the code below replaces all default linear layers with randomized ones.

from fewbit import RandomizedLinear
from fewbit.util import convert_linear, map_module

converter = lambda x: convert_linear(x, RandomizedLinear, proj_dim_ratio=0.1)
new_model = map_module(old_model, converter)  # In-place model construction.

Quantized Gradients of Activation Functions

Installation

The simplest and preferred installation way is installation from PyPI.

pip install -U fewbit

FewBit is written in Python, but it implements some opertions in C++/CUDA to archive better performance. So, building from source requires CUDA Toolkit and CMake as a build system. The latest release can be installed with the following command.

pip install -U https://github.com/SkoltechAI/fewbit.git

List of Activation Functions

The library supports the following activation functions.

Piece-wise Activation Functions

In this section, all activation functions has 1-bit derivative. The only difference is band. The band requires two comparison to determine gradient domain. The complete list of activation functions is leaky_relu, relu, threshold, hardsigmoid, hardtanh, relu6, hardshrink, and softshrink.

Continous Activation Functions

All continous activation function could be divided into three classes according to its parity property: odd, even, and neither even nor odd. The parity property allows to use a small optimization to increase precision of approximation. The complete list of reimplemented activation functions in this category is celu, elu, hardswish, logsigmoid, mish, selu, sigmoid, silu, softplus, softsign, tanh, and tanhshrink.

List of Modules

Module RandomizedLinear is a replacement for default Linear module. It is used power of approximate matrix multiplication for memory saving.

Assembly

Preliminary step depends on one's PyTorch distribution and availiable tooling. Building of native components requires CMake and a build system like Make or Ninja. Next, if PyTorch is installed system-wide the the following step is not neccessary. Otherwise, one likely should add search path for CMake modules to environment variables as follows.

export CMAKE_PREFIX_PATH="$(python -c 'import torch.utils; print(torch.utils.cmake_prefix_path)')"

The next step is useful in development environment. It just builds PyTorch operator library in source tree (option --inplace) with forced CUDA support (option --cuda). By default no CUDA support are forced.

python setup.py build_ext --inplace --cuda

With options similar to the previous step, one can build wheel binary distribution of the package.

python setup.py bdist_wheel --inplace --cuda

Development Environment with Docker

In order to develop on different platforms we uses custom docker image for non-priviledge user based on Nvidia CUDA image. Image contains pre-built native extention and it is parametrized by user name and user ID in a host system. The latter is crucial thing in binding host volumes.

docker build -t fewbit --build-arg UID=$(id -u) .
docker run --rm -ti -e TERM=$TERM fewbit

Citation

Please cite the following papers if the library is used in an academic paper (export BibTeX).

@misc{bershatsky2022memoryefficient,
    title={{M}emory-{E}fficient {B}ackpropagation through {L}arge {L}inear {L}ayers},
    author={Daniel Bershatsky and Aleksandr Mikhalev and Alexandr Katrutsa and Julia Gusak and Daniil Merkulov and Ivan Oseledets},
    year={2022},
    eprint={2201.13195},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
}

@misc{novikov2022fewbit,
    title={{F}ew-{B}it {B}ackward: {Q}uantized {G}radients of {A}ctivation {F}unctions for {M}emory {F}ootprint {R}eduction},
    author={Georgii Novikov and Daniel Bershatsky and Julia Gusak and Alex Shonenkov and Denis Dimitrov and Ivan Oseledets},
    year={2022},
    eprint={2202.00441},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
}

License

© The FewBit authors, 2022 — now. Licensed under the BSD 3-Clause License. See AUTHORS and LICENSE file for more details1.

Footnotes

  1. The work was supported by Sber AI and the Analytical center under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021).

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022