A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

Overview

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-size volumes of raw events like game history events, clickstream data, purchase history or card transactions.

It supports various methods of self-supervised training, adapted for event sequences:

  • Contrastive Learning for Event Sequences (CoLES)
  • Contrastive Predictive Coding (CPC)
  • Replaced Token Detection (RTD) from ELECTRA
  • Next Sequence Prediction (NSP) from BERT
  • Sequences Order Prediction (SOP) from ALBERT

It supports several types of encoders, including Transformer and RNN. It also supports many types of self-supervised losses.

The following variants of the contrastive losses are supported:

Install from PyPi

pip install pytorch-lifestream

Install from source

# Ubuntu 20.04

sudo apt install python3.8 python3-venv
pip3 install pipenv

pipenv sync  --dev # install packages exactly as specified in Pipfile.lock
pipenv shell
pytest

Demo notebooks

  • Self-supervided training and embeddings for downstream task notebook
  • Self-supervided embeddings in CatBoost notebook
  • Self-supervided training and fine-tuning notebook
  • PySpark and Parquet for data preprocessing notebook

Experiments on public datasets

pytorch-lifestream usage experiments on several public event datasets are available in the separate repo

Comments
  • torch.stack in def collate_feature_dict

    torch.stack in def collate_feature_dict

    ptls/data_load/utils.py

    Hello!

    If the dataloader has a feature called target. And the batchsize is not a multiple of the length of the dataset, then an error pops up on the last batch: "Sizes of tensors must match except in dimension 0". Due to the use of torch.staсk when processing a feature startwith 'target'.

    opened by Ivanich-spb 11
  • Not supported multiGPU option from pytorchlightning.Trainer

    Not supported multiGPU option from pytorchlightning.Trainer

    Try to set Trainer(gpus=[0,1]), while using PtlsDataModule as data module, get such error:

    AttributeError: Can't pickle local object 'PtlsDataModule.__init__.<locals>.train_dataloader'

    opened by mazitovs 1
  • Correct seq_len for feature dict

    Correct seq_len for feature dict

    rec = {
        'mcc': [0, 1, 2, 3],
        'target_distribution': [0.1, 0.2, 0.4, 0.1, 0.1, 0.0],
    }
    

    How to get correct seq_len. true len: 4 possible length: 4, 6 'target_distribution' is incorrect field to get length, this is not a sequence, this is an array

    opened by ivkireev86 1
  • Save categories encodings along with model weights in demos

    Save categories encodings along with model weights in demos

    Вместе с обученной моделью необходимо сохранять обученный препроцессор и разбивку на трейн-тест. Иначе категории могут поехать и сохраненная предобученная модель станет бесполезной.

    opened by ivkireev86 1
  • Documentation index

    Documentation index

    Прототип главной страницы документации. Три секции:

    • описание моделей библиотеки
    • гайд как использовать библиотеку
    • как писать свои компоненты

    Есть краткое описание и ссылки на подробные (которые напишем потом).

    В описании модулей предложена структура библиотеки. Предполагается, что мы эти модули в ближайшее создадим и перетащим туда соответсвующие классы из библиотеки. Старые, модули, которые станут пустыми, удалим. Далее будем придерживаться схемы, описанной в этом документе.

    На ревью предлагается чекнуть предлагаемую структуру библиотеки, названия модулей ну и сам описательный текст документа.

    opened by ivkireev86 1
  • KL cyclostationarity test tools

    KL cyclostationarity test tools

    Test provides a hystogram with self-samples similarity vs. random sample similarity. Shows compatibility with CoLES.

    Think about tests for other frameworks.

    opened by ivkireev86 0
  • Repair pyspark tests

    Repair pyspark tests

    def test_dt_to_timestamp(): spark = SparkSession.builder.getOrCreate() df = spark.createDataFrame(data=[ {'dt': '1970-01-01 00:00:00'}, {'dt': '2012-01-01 12:01:16'}, {'dt': '2021-12-30 00:00:00'} ])

        df = df.withColumn('ts', dt_to_timestamp('dt'))
        ts = [rec.ts for rec in df.select('ts').collect()]
    
      assert ts == [0, 1325419276, 1640822400]
    

    E assert [-10800, 1325...6, 1640811600] == [0, 1325419276, 1640822400] E At index 0 diff: -10800 != 0 E Use -v to get more diff

    ptls_tests/test_preprocessing/test_pyspark/test_event_time.py:16: AssertionError


    def test_datetime_to_timestamp(): t = DatetimeToTimestamp(col_name_original='dt') spark = SparkSession.builder.getOrCreate() df = spark.createDataFrame(data=[ {'dt': '1970-01-01 00:00:00', 'rn': 1}, {'dt': '2012-01-01 12:01:16', 'rn': 2}, {'dt': '2021-12-30 00:00:00', 'rn': 3} ]) df = t.fit_transform(df) et = [rec.event_time for rec in df.select('event_time').collect()]

      assert et[0] == 0
    

    E assert -10800 == 0

    ptls_tests/test_preprocessing/test_pyspark/test_event_time.py:48: AssertionError

    opened by ikretus 0
  • docs. Development guide (for demo notebooks)

    docs. Development guide (for demo notebooks)

    • add current patterns
    • when model training start print message "model training stats, please wait. See tensorboard to track progress", use it with enable_progress=False
    documentation user feedback 
    opened by ivkireev86 0
Releases(v0.5.1)
  • v0.5.1(Dec 28, 2022)

    What's Changed

    • fixed cpc import by @ArtyomVorobev in https://github.com/dllllb/pytorch-lifestream/pull/90
    • add softmaxloss and tests by @ArtyomVorobev in https://github.com/dllllb/pytorch-lifestream/pull/87
    • MLM NSP Module by @mazitovs in https://github.com/dllllb/pytorch-lifestream/pull/88
    • fix test dropout error by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/91

    New Contributors

    • @ArtyomVorobev made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/90
    • @mazitovs made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/88

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.5.0...v0.5.1

    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Nov 9, 2022)

    What's Changed

    • Fix metrics reset by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/72
    • Pandas preprocessing without df copy, faster preprocessing for large datasets by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/73
    • fix in supervised-sequence-to-target.ipynb by @blinovpd in https://github.com/dllllb/pytorch-lifestream/pull/74
    • ptls.nn.PBDropout by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/75
    • tanh for rnn starter by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/76
    • Auc regr metric by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/78
    • spatial dropout for NoisyEmbedding, LastMaxAvgEncoder, warning for bidir RnnEncoder by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/80
    • Hparam tuning demo. hydra, optuna, tensorboard by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/81
    • tabformer by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/83
    • Supervised Coles Module, trx_encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/84

    New Contributors

    • @blinovpd made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/74

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.4.0...v0.5.0

    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(Jul 27, 2022)

    What's Changed

    • Seq encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/29
    • regr.task ZILNLoss, RMSE, BucketAccuracy by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/36
    • lighting modules and nn layers refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/34
    • Demo colab by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/40
    • Fix drop target arrays by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/42
    • feature naming by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/43
    • Update abs_module.py by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/37
    • Extended inference demo by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/45
    • fix import path by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/46
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/50
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/52
    • Target dist by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/58
    • Data load refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/60
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/62
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/63

    New Contributors

    • @ikretus made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/36

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.3.0...v0.4.0

    What's Changed

    • Seq encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/29
    • regr.task ZILNLoss, RMSE, BucketAccuracy by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/36
    • lighting modules and nn layers refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/34
    • Demo colab by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/40
    • Fix drop target arrays by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/42
    • feature naming by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/43
    • Update abs_module.py by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/37
    • Extended inference demo by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/45
    • fix import path by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/46
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/50
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/52
    • Target dist by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/58
    • Data load refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/60
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/62
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/63

    New Contributors

    • @ikretus made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/36

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.3.0...v0.4.0

    What's Changed

    • Seq encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/29
    • regr.task ZILNLoss, RMSE, BucketAccuracy by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/36
    • lighting modules and nn layers refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/34
    • Demo colab by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/40
    • Fix drop target arrays by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/42
    • feature naming by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/43
    • Update abs_module.py by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/37
    • Extended inference demo by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/45
    • fix import path by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/46
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/50
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/52
    • Target dist by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/58
    • Data load refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/60
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/62
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/63

    New Contributors

    • @ikretus made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/36

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.3.0...v0.4.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Jun 12, 2022)

    More Pythonic Core API: constructor arguments instead of config objects

    What's Changed

    • cpc params by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/9
    • All modules by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/15
    • Mlm pretrain by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/13
    • all encoders and get rid of get_loss by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/19
    • init by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/20
    • Documentation index by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/8
    • Demos api update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/18
    • loss output correction by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/22
    • Test fixes by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/23
    • readme_demo_link by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/25
    • init by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/26
    • work without logger by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/7
    • trx_encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/28

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.1.2...v0.3.0

    Source code(tar.gz)
    Source code(zip)
Owner
Dmitri Babaev
Dmitri Babaev
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022