Does Pretraining for Summarization Reuqire Knowledge Transfer?

Overview

Does Pretraining for Summarization Reuqire Knowledge Transfer?

This repository is the official implementation of the work in the paper Does Pretraining for Summarization Reuqire Knowledge Transfer? to appear in Findings of EMNLP 2021.
You can find the paper on arXiv here: https://arxiv.org/abs/2109.04953

Requirements

This code requires Python 3 (tested using version 3.6)

To install requirements, run:

pip install -r requirements.txt

Preparing finetuning datasets

To prepare a summarization dataset for finetuning, run the corresponding script in the finetuning_datasetgen folder. For example, to prepare the cnn-dailymail dataset run:

cd finetuning_datasetgen
python cnndm.py

Running finetuning experiment

We show here how to run training, prediction and evaluation steps for a finetuning experiment. We assume that you have downloaded the pretrained models in the pretrained_models folder from the provided Google Drive link (see pretrained_models/README.md) If you want to pretrain models yourself, see latter part of this readme for the instructions.

All models in our work are trained using allennlp config files which are in .jsonnet format. To run a finetuning experiment, simply run

# for t5-like models
./pipeline_t5.sh 
   
    

# for pointer-generator models
./pipeline_pg.sh 
    

    
   

For example, for finetuning a T5 model on cnndailymail dataset, starting from a model pretrained with ourtasks-nonsense pretraining dataset, run

./pipeline_t5.sh finetuning_experiments/cnndm/t5-ourtasks-nonsense

Similarly, for finetuning a randomly-initialized pointer-generator model, run

./pipeline_pg.sh finetuning_experiments/cnndm/pg-randominit

The trained model and output files would be available in the folder that would be created by the script.

model.tar.gz contains the trained (finetuned) model

test_outputs.jsonl contains the outputs of the model on the test split.

test_genmetrics.json contains the ROUGE scores of the output

Creating pretraining datasets

We have provided the nonsense pretraining datasets used in our work via Google Drive (see dataset_root/pretraining_datasets/README.md for instructions)

However, if you want to generate your own pretraining corpus, you can run

cd pretraining_datasetgen
# for generating dataset using pretraining tasks
python ourtasks.py
# for generating dataset using STEP pretraining tasks
python steptasks.py

These commands would create pretraining datasets using nonsense. If you want to create datasets starting from wikipedia documents please look into the two scripts which guide you how to do that by commenting/uncommenting two blocks of code.

Pretraining models

Although we provide you the pretrained model checkpoints via GoogleDrive, if you want to pretrain your own models, you can do that by using the corresponding pretraining config file. As an example, we have provided a config file which pretrains on ourtasks-nonsense dataset. Make sure that the pretraining dataset files exist (either created by you or downloaded from GoogleDrive) before running the pretraining command. The pretraining is also done using the same shell scripts used for the finetuning experiments. For example, to pretrain a model on the ourtasks-nonsense dataset, simply run :

./pipeline_t5.sh pretraining_experiments/pretraining_t5_ourtasks_nonsense
Owner
Approximately Correct Machine Intelligence (ACMI) Lab
Research on machine learning, its social impacts, and applications to healthcare. PI—@zackchase
Approximately Correct Machine Intelligence (ACMI) Lab
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022