Temporal-Relational CrossTransformers

Related tags

Deep Learningtrx
Overview

Temporal-Relational Cross-Transformers (TRX)

This repo contains code for the method introduced in the paper:

Temporal-Relational CrossTransformers for Few-Shot Action Recognition

We provide two ways to use this method. The first is to incorporate it into your own few-shot video framework to allow direct comparisons against your method using the same codebase. This is recommended, as everyone has different systems, data storage etc. The second is a full train/test framework, which you will need to modify to suit your system.

Use within your own few-shot framework (recommended)

TRX_CNN in model.py contains a TRX with multiple cardinalities (i.e. pairs, triples etc.) and a ResNet backbone. It takes in support set videos, support set labels and query videos. It outputs the distances from each query video to each of the query-specific support set prototypes which are used as logits. Feed this into the loss from utils.py. An example of how it is constructed with the required arguments, and how it is called (with input dimensions etc.) is in main in model.py

You can use it with ResNet18 with 84x84 resolution on one GPU, but we recommend distributing the CNN over multiple GPUs so you can use ResNet50, 224x224 and 5 query videos per class. How you do this will depend on your system, but the function distribute shows how we do it.

Use episodic training. That is, construct a random task from the training dataset like e.g. MAML, prototypical nets etc.. Average gradients and backpropogate once every 16 training tasks. You can look at the rest of the code for an example of how this is done.

Use with our framework

It includes the training and testing process, data loader, logging and so on. It's fairly system specific, in particular the data loader, so it is recommended that you use within your own framework (see above).

Download your chosen dataset, and extract frames to be of the form dataset/class/video/frame-number.jpg (8 digits, zero-padded). To prepare your data, zip the dataset folder with no compression. We did this as our filesystem has a large block size and limited number of individual files, which means one large zip file has to be stored in RAM. If you don't have this limitation (hopefully you won't because it's annoying) then you may prefer to use a different data loading process.

Put your desired splits (we used https://github.com/ffmpbgrnn/CMN for Kinetics and SSv2) in text files. These should be called trainlistXX.txt and testlistXX.txt. XX is a 0-padded number, e.g. 01. You can have separate text files for evaluating on the validation set, e.g. trainlist01.txt/testlist01.txt to train on the train set and evaluate on the the test set, and trainlist02.txt/testlist02.txt to train on the train set and evaluate on the validation set. The number is passed as a command line argument.

Modify the distribute function in model.py. We have 4 x 11GB GPUs, so we split the ResNets over the 4 GPUs and leave the cross-transformer part on GPU 0. The ResNets are always split evenly across all GPUs specified, so you might have to split the cross-transformer part, or have the cross-transformer part on its own GPU.

Modify the command line parser in run.py so it has the correct paths and filenames for the dataset zip and split text files.

Acknowledgements

We based our code on CNAPs (logging, training, evaluation etc.). We use torch_videovision for video transforms. We took inspiration from the image-based CrossTransformer and the Temporal-Relational Network.

Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021