Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Overview

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements

Our implementation used for the MICCAI 2021 FLARE Challenge titled Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements.

You need to have the MedicalDataAugmentationTool framework by Christian Payer downloaded and in your PYTHONPATH for the scripts to work.

If you have questions about the code, write me a mail.

Dependencies

The following frameworks/libraries were used in the version as stated. If you run into problems with the libraries, please verify that you have the same version installed.

  • Python 3.9
  • TensorFlow 2.6
  • SimpleITK 2.0
  • Numpy 1.20

Dataset and Preprocessing

The dataset as well as a detailed description of it can be found on the challenge website. Follow the steps described there to download the data.

Define the base_dataset_folder containing the downloaded TrainingImg, TrainingMask and ValidationImg in the script preprocessing/preprocessing.py and execute it to generate TrainingImg_small and TrainingMask_small.

Also, download the setup folder provided in this repository and place it in the base_dataset_folder, the following structure is expected:

.                                       # The `base_dataset_folder` of the dataset
├── TrainingImg                         # Image folder containing all training images
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz            
├── TrainingMask                        # Image folder containing all training masks
│   ├── train_000.nii.gz            
│   ├── ...                   
│   └── train_360.nii.gz  
├── ValidationImg                       # Image folder containing all validation images
│   ├── validation_000_0000.nii.gz            
│   ├── ...                   
│   └── validation_360_0000.nii.gz  
├── TrainingImg_small                   # Image folder containing all downsampled training images generated by `preprocessing/preprocessing.py`
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz  
├── TrainingMask_small                  # Image folder containing all downsampled training masks generated by `preprocessing/preprocessing.py`
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz  
└── setup                               # Setup folder as provided in this repository

Train Models

To train a localization model, run localization/main.py after defining the base_dataset_folder as well as the base_output_folder.

To train a segmentation model, run scn/main.py. Again, base_dataset_folder and base_output_folder need to be set accordingly beforehand.

In both cases in function run(), the variable cv can be set to 0, 1, 2, 3 or 4. The values 1-4 represent the respective cross-validation fold. When choosing 0, all training data is used to train the model, which also deactivates the generation of test outputs.

Further parameters like the number of training iterations (max_iter) and the number of iterations after which to perfrom testing (test_iter) can be modified in __init__() of the MainLoop class.

Generate a SavedModel

To convert a trained network to a SavedModel, the script localization/main_create_model.py respectively scn/main_create_model.py can be used after a model was trained.

Before running the respective script, the variable load_model_base needs to be set to the trained models output folder, e.g., .../localization/cv1/2021-09-27_13-18-59.

Furthermore, load_model_iter should be set to the same value as max_iter used during training the model. The value needs to be set to an iteration for which the network weights have been generated.

Generate tf_utils_module

The script inference/inference_tf_utils_module.py can be used to trace and save the tf.functions used for preprocessing during inference into a SavedModel and generate saved_models/tf_utils_module.

To do so, the input_path and output_path need to be defined in the script. The input_path is expected to contain valid images, we suggest to use the folder ValidationImg.

Inference

The provided inference script can be used to evaluate the performance of our method on unseen data efficiently.

The script inference/inference.py requires that all SavedModels are present in the saved_models folder, i.e., saved_models/localization, saved_models/segmentation and saved_models/tf_utils_module need to contain the respective SavedModel. Either, use the provided SavedModels for inference by copying them from submitted_saved_models to saved_models, or use your own models generated as described above.

Additionally, the input_path and output_path need to be defined in the script. The input_path is expected to contain valid images, we suggest to use the folder ValidationImg.

.                                       # The base folder of this repository.
├── saved_models                        # Required by `inference.py`.
│   ├── localization                    # SavedModel of the localization model.
│   │   ├── assets
│   │   ├── variables
│   │   └── saved_model.pb
│   ├── segmentation                    # SavedModel of the segmentation (scn) model.
│   │   ├── assets
│   │   ├── variables
│   │   └── saved_model.pb
│   └── tf_utils_module                 # SavedModel of the tf.functions used for preprocessing during inference.
│       ├── assets
│       ├── variables
│       └── saved_model.pb
...

Docker

The provided Dockerfile can be used to generate a docker image which can readily be used for inference. The SavedModels are expected in the folder saved_models, either copy the provided SavedModels from submitted_saved_models to saved_models or generate your own. If you have a problem with setting up docker, please refer to the documentation.

To build a docker model, run the following command in the folder containing the Dockerfile.

docker build -t icg .

To run your built docker, use the command below, after defining the input and output directories within the command. We recommend to use ValidationImg as input folder.

If you have multiple GPUs and want to select a specific one to run the docker image, modify /dev/nvidia0 to the respective GPUs identifier, e.g., /dev/nvidia1.

docker container run --gpus all --device /dev/nvidia0 --device /dev/nvidia-uvm --device /dev/nvidia-uvm-tools --device /dev/nvidiactl --name icg --rm -v /PATH/TO/DATASET/ValidationImg/:/workspace/inputs/ -v /PATH/TO/OUTPUT/FOLDER/:/workspace/outputs/ icg:latest /bin/bash -c "sh predict.sh" 

Citation

If you use this code for your research, please cite our paper.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements

@article{Thaler2021Efficient,
  title={Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements},
  author={Thaler, Franz and Payer, Christian and Bischof, Horst and {\v{S}}tern, Darko},
  year={2021}
}
Owner
Franz Thaler
Franz Thaler
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023