Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

Overview

FENSE

The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evaluated with Image Caption Metrics?"

The main branch contains an easy-to-use interface for fast evaluation of an audio captioning system.

Online demo avaliable at https://share.streamlit.io/blmoistawinde/fense/main/streamlit_demo/app.py .

To get the dataset (AudioCaps-Eval and Clotho-Eval) and the code to reproduce, please refer to the experiment-code branch.

Installation

Clone the repository and pip install it.

git clone https://github.com/blmoistawinde/fense.git
cd fense
pip install -e .

Usage

Single Sentence

To get the detailed scores of each component for a single sentence.

from fense.evaluator import Evaluator

print("----Using tiny models----")
evaluator = Evaluator(device='cpu', sbert_model='paraphrase-MiniLM-L6-v2', echecker_model='echecker_clotho_audiocaps_tiny')

eval_cap = "An engine in idling and a man is speaking and then"
ref_cap = "A machine makes stitching sounds while people are talking in the background"

score, error_prob, penalized_score = evaluator.sentence_score(eval_cap, [ref_cap], return_error_prob=True)

print("Cand:", eval_cap)
print("Ref:", ref_cap)
print(f"SBERT sim: {score:.4f}, Error Prob: {error_prob:.4f}, Penalized score: {penalized_score:.4f}")

System Score

To get a system's overall score on a dataset by averaging sentence-level FENSE, you can use eval_system.py, with your system outputs prepared in the format like test_data/audiocaps_cands.csv or test_data/clotho_cands.csv .

For AudioCaps test set:

python eval_system.py --device cuda --dataset audiocaps --cands_dir ./test_data/audiocaps_cands.csv

For Clotho Eval set:

python eval_system.py --device cuda --dataset clotho --cands_dir ./test_data/clotho_cands.csv

Performance Benchmark

We benchmark the performance of FENSE with different choices of SBERT model and Error Detector on the two benchmark dataset AudioCaps-Eval and Clotho-Eval. (*) is the combination reported in paper.

AudioCaps-Eval

SBERT echecker HC HI HM MM total
paraphrase-MiniLM-L6-v2 none 62.1 98.8 93.7 75.4 80.4
paraphrase-MiniLM-L6-v2 tiny 57.6 94.7 89.5 82.6 82.3
paraphrase-MiniLM-L6-v2 base 62.6 98 82.5 85.4 85.5
paraphrase-TinyBERT-L6-v2 none 64 99.2 92.5 73.6 79.6
paraphrase-TinyBERT-L6-v2 tiny 58.6 95.1 88.3 82.2 82.1
paraphrase-TinyBERT-L6-v2 base 64.5 98.4 91.6 84.6 85.3(*)
paraphrase-mpnet-base-v2 none 63.1 98.8 94.1 74.1 80.1
paraphrase-mpnet-base-v2 tiny 58.1 94.3 90 83.2 82.7
paraphrase-mpnet-base-v2 base 63.5 98 92.5 85.9 85.9

Clotho-Eval

SBERT echecker HC HI HM MM total
paraphrase-MiniLM-L6-v2 none 59.5 95.1 76.3 66.2 71.3
paraphrase-MiniLM-L6-v2 tiny 56.7 90.6 79.3 70.9 73.3
paraphrase-MiniLM-L6-v2 base 60 94.3 80.6 72.3 75.3
paraphrase-TinyBERT-L6-v2 none 60 95.5 75.9 66.9 71.8
paraphrase-TinyBERT-L6-v2 tiny 59 93 79.7 71.5 74.4
paraphrase-TinyBERT-L6-v2 base 60.5 94.7 80.2 72.8 75.7(*)
paraphrase-mpnet-base-v2 none 56.2 96.3 77.6 65.2 70.7
paraphrase-mpnet-base-v2 tiny 54.8 91.8 80.6 70.1 73
paraphrase-mpnet-base-v2 base 57.1 95.5 81.9 71.6 74.9

Reference

If you use FENSE in your research, please cite:

@misc{zhou2021audio,
      title={Can Audio Captions Be Evaluated with Image Caption Metrics?}, 
      author={Zelin Zhou and Zhiling Zhang and Xuenan Xu and Zeyu Xie and Mengyue Wu and Kenny Q. Zhu},
      year={2021},
      eprint={2110.04684},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}
You might also like...
I-BERT: Integer-only BERT Quantization
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Source code for NAACL 2021 paper
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Yet another video caption

Yet another video caption

Fine-grained Control of Image Caption Generation with Abstract Scene Graphs
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022